From f43fc9c2d2f01f729b281198c29fa76b3dca46ea Mon Sep 17 00:00:00 2001 From: Vincent Beffara <vbeffara@gmail.com> Date: Tue, 13 Feb 2024 17:24:16 +0100 Subject: [PATCH] Berk --- RMT4/square2.lean | 136 ++++++++++++++++++++++++++++++---------------- 1 file changed, 88 insertions(+), 48 deletions(-) diff --git a/RMT4/square2.lean b/RMT4/square2.lean index b28f0ff..163daff 100644 --- a/RMT4/square2.lean +++ b/RMT4/square2.lean @@ -3,11 +3,13 @@ import RMT4.Primitive set_option autoImplicit false -variable {f f' : ℂ → ℂ} {w z z₁ z₂ z₃ z₄ w₁ w₂ w₃ w₄ p : ℂ} {W : Fin 4 -> ℂ} {t x x₁ x₂ y y₁ y₂ : ℝ} - {U : Set ℂ} {γ₁ γ₂ : ℝ → ℂ} +variable {f f' F : ℂ → ℂ} {w z z₁ z₂ z₃ z₄ w₁ w₂ w₃ w₄ p : ℂ} {W : Fin 4 -> ℂ} + {t x x₁ x₂ y y₁ y₂ : ℝ} {U : Set ℂ} {γ₁ γ₂ : ℝ → ℂ} open Complex Set Metric Topology Interval +local notation "𝕀" => Icc (0 : ℝ) 1 + noncomputable def SegmentIntegral (f : ℂ → ℂ) (z w : ℂ) : ℂ := (w - z) • ∫ t in (0:ℝ)..1, f (z + t • (w - z)) @@ -62,47 +64,45 @@ theorem SegmentIntegral_deriv (hU : IsOpen U) (hf : DifferentiableOn ℂ f U) exact l0 ht simpa using intervalIntegral.integral_unitInterval_deriv_eq_sub l1 l2 +lemma mapsto_segment (h : segment ℝ z w ⊆ U) : MapsTo (fun t => z + t • (w - z)) 𝕀 U := by + intro t ht ; apply h ; convert mem_segment ht using 1 ; simp ; ring + +theorem SegmentIntegral_deriv' (hf : ContinuousOn f U) (hzw : segment ℝ z w ⊆ U) + (h'2 : ∀ z ∈ U, HasDerivAt F (f z) z) : SegmentIntegral f z w = F w - F z := by + have l1 : ContinuousOn (fun t => f (z + t • (w - z))) 𝕀 := by + refine hf.comp ?_ <| mapsto_segment hzw + apply Continuous.continuousOn ; continuity + have l2 (t : ℝ) (ht : t ∈ 𝕀) : HasDerivAt F (f (z + t • (w - z))) (z + t • (w - z)) := + h'2 _ <| mapsto_segment hzw ht + simpa using intervalIntegral.integral_unitInterval_deriv_eq_sub l1 l2 + theorem LineIntegral_diff (hU : IsOpen U) (hf : DifferentiableOn ℂ f U) (hγ₁ : Differentiable ℝ γ₁) (hγ₂ : Differentiable ℝ γ₂) (h : segment ℝ (γ₁ t) (γ₂ t) ⊆ U) : HasDerivAt (λ t => SegmentIntegral f (γ₁ t) (γ₂ t)) - (deriv γ₂ t * f (γ₂ t) - deriv γ₁ t * f (γ₁ t)) t := by + (f (γ₂ t) * deriv γ₂ t - f (γ₁ t) * deriv γ₁ t) t := by obtain ⟨V, hV1, hV2, hV3, hV4⟩ := convex_neighborhood hU h - have (z : ℂ) (hz : z ∈ V) : HasDerivAt (primitive f (γ₁ t)) (f z) z := by - exact (hf.mono hV3).exists_primitive (hV4.starConvex <| hV2 (left_mem_segment ℝ (γ₁ t) (γ₂ t))) - hV1 hz + have e5 : γ₁ t ∈ V := hV2 <| left_mem_segment ℝ (γ₁ t) (γ₂ t) + have e4 : γ₂ t ∈ V := hV2 <| right_mem_segment ℝ (γ₁ t) (γ₂ t) + have (z : ℂ) (hz : z ∈ V) : HasDerivAt (primitive f (γ₁ t)) (f z) z := + (hf.mono hV3).exists_primitive (hV4.starConvex e5) hV1 hz + have e1 : ∀ᶠ s in 𝓝 t, γ₁ s ∈ V := hγ₁.continuous.continuousAt <| hV1.mem_nhds e5 + have e2 : ∀ᶠ s in 𝓝 t, γ₂ s ∈ V := hγ₂.continuous.continuousAt <| hV1.mem_nhds e4 + have e3 : DifferentiableOn ℂ (primitive f (γ₁ t)) V := by + intro z hz ; exact (this z hz).differentiableAt.differentiableWithinAt have l1 : ∀ᶠ s in 𝓝 t, SegmentIntegral f (γ₁ s) (γ₂ s) = primitive f (γ₁ t) (γ₂ s) - primitive f (γ₁ t) (γ₁ s) := by - have e1 : ∀ᶠ s in 𝓝 t, γ₁ s ∈ V := by - have ee3 : γ₁ t ∈ V := hV2 (left_mem_segment ℝ (γ₁ t) (γ₂ t)) - have ee1 : V ∈ 𝓝 (γ₁ t) := hV1.mem_nhds ee3 - exact hγ₁.continuous.continuousAt ee1 - have e2 : ∀ᶠ s in 𝓝 t, γ₂ s ∈ V := by - have ee3 : γ₂ t ∈ V := hV2 (right_mem_segment ℝ (γ₁ t) (γ₂ t)) - have ee1 : V ∈ 𝓝 (γ₂ t) := hV1.mem_nhds ee3 - exact hγ₂.continuous.continuousAt ee1 filter_upwards [e1, e2] with s hs1 hs2 - have e3 : DifferentiableOn ℂ (primitive f (γ₁ t)) V := by - intro z hz - apply DifferentiableAt.differentiableWithinAt - exact (this z hz).differentiableAt have e4 : segment ℝ (γ₁ s) (γ₂ s) ⊆ V := hV4.segment_subset hs1 hs2 - rw [← @SegmentIntegral_deriv (primitive f (γ₁ t)) (γ₂ s) (γ₁ s) V hV1 e3 e4] + rw [← SegmentIntegral_deriv hV1 e3 e4] simp [SegmentIntegral] ; left apply intervalIntegral.integral_congr intro t ht simp - have e5 := @Convex.add_smul_mem ℝ ℂ _ _ _ V hV4 (γ₁ s) (γ₂ s - γ₁ s) hs1 (by simpa using hs2) - t (by simpa using ht) - exact (this (γ₁ s + ↑t * (γ₂ s - γ₁ s)) (by simpa using e5)).deriv.symm + have e5 := hV4.add_smul_mem (y := γ₂ s - γ₁ s) hs1 (by simpa using hs2) (by simpa using ht) + exact (this (γ₁ s + t * (γ₂ s - γ₁ s)) (by simpa using e5)).deriv.symm refine HasDerivAt.congr_of_eventuallyEq (HasDerivAt.sub ?_ ?_) l1 - · have e'1 := this (γ₂ t) <| hV2 (right_mem_segment ℝ (γ₁ t) (γ₂ t)) - have e2 := (hγ₂ t).hasDerivAt - have := @HasDerivAt.comp ℝ _ t ℂ _ _ γ₂ (primitive f (γ₁ t)) (deriv γ₂ t) (f (γ₂ t)) e'1 e2 - convert this using 1 ; ring - · have e'1 := this (γ₁ t) <| hV2 (left_mem_segment ℝ (γ₁ t) (γ₂ t)) - have e2 := (hγ₁ t).hasDerivAt - have := @HasDerivAt.comp ℝ _ t ℂ _ _ γ₁ (primitive f (γ₁ t)) (deriv γ₁ t) (f (γ₁ t)) e'1 e2 - convert this using 1 ; ring + · exact this (γ₂ t) e4 |>.comp _ (hγ₂ t).hasDerivAt + · exact this (γ₁ t) e5 |>.comp _ (hγ₁ t).hasDerivAt noncomputable def RectangleIntegral (f : ℂ → ℂ) (z w : ℂ) : ℂ := ((∫ x : ℝ in z.re..w.re, f (x + z.im * I)) - (∫ x : ℝ in z.re..w.re, f (x + w.im * I)) @@ -183,25 +183,65 @@ abbrev HolomorphicOn {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E] (f : def Rectangle (z w : ℂ) : Set ℂ := [[z.re, w.re]] ×ℂ [[z.im, w.im]] -lemma mine (h1 : z.re < p.re) (h2 : p.re < w.re) (h3 : z.im < p.im) (h4 : p.im < w.im) - (hU : IsOpen U) (hf : HolomorphicOn f U) (h : Rectangle z w ⊆ U) : ∀ᶠ c : ℝ in 𝓝[>] 0, - RectangleIntegral f z w = RectangleIntegral f (p - c - c * I) (p + c + c * I) := by - have h1 : ∀ᶠ c : ℝ in 𝓝[>] 0, z.re < p.re - c := sorry - have h2 : ∀ᶠ c : ℝ in 𝓝[>] 0, p.re + c < w.re := sorry - have h3 : ∀ᶠ c : ℝ in 𝓝[>] 0, z.im < p.im - c := sorry - have h4 : ∀ᶠ c : ℝ in 𝓝[>] 0, p.im + c < w.im := sorry +theorem QuadIntegral_cancel (hf : ContinuousOn f U) (hQ : QuadSupport w₁ w₂ w₃ w₄ ⊆ U) + (h' : ∃ F : ℂ → ℂ, ∀ z ∈ U, HasDerivAt F (f z) z) : QuadIntegral f w₁ w₂ w₃ w₄ = 0 := by + simp [QuadSupport] at hQ ; obtain ⟨⟨⟨l2, l3⟩, l4⟩, l5⟩ := hQ + obtain ⟨F, hF2⟩ := h' + simp [QuadIntegral, SegmentIntegral_deriv' hf l2 hF2, SegmentIntegral_deriv' hf l3 hF2, + SegmentIntegral_deriv' hf l4 hF2, SegmentIntegral_deriv' hf l5 hF2] + +-- example {a b c d : ℝ} (h1 : a = b) (h2 : c = d) : a + c = b + d := by +-- exact Mathlib.Tactic.LinearCombination.add_pf h1 h2 + +lemma mine (h1 : z.re < 0) (h2 : 0 < w.re) (h3 : z.im < 0) (h4 : 0 < w.im) (hU : IsOpen U) + (hf : HolomorphicOn f (U \ {0})) (h : Rectangle z w ⊆ U) : ∀ᶠ c : ℝ in 𝓝[>] 0, + RectangleIntegral f z w = RectangleIntegral f (- c - c * I) (c + c * I) := by + have h1 : ∀ᶠ c : ℝ in 𝓝[>] 0, z.re < - c := sorry + have h2 : ∀ᶠ c : ℝ in 𝓝[>] 0, c < w.re := sorry + have h3 : ∀ᶠ c : ℝ in 𝓝[>] 0, z.im < - c := sorry + have h4 : ∀ᶠ c : ℝ in 𝓝[>] 0, c < w.im := sorry filter_upwards [h1, h2, h3, h4] with c c1 c2 c3 c4 - let w₁ (t : ℝ) := p - c - c * I + t * (z - (p - c - c * I)) - let w₂ (t : ℝ) := p + c - c * I + t * (w.re + I * z.im - (p + c - c * I)) - let w₃ (t : ℝ) := p + c + c * I + t * (w - (p + c + c * I)) - let w₄ (t : ℝ) := p - c + c * I + t * (z.re + I * w.im - (p - c + c * I)) - let φ (t : ℝ) := QuadIntegral f (w₁ t) (w₂ t) (w₃ t) (w₄ t) - suffices ∀ t ∈ Icc 0 1, HasDerivAt φ 0 t by - have e1 : φ 0 = RectangleIntegral f (p - c - c * I) (p + c + c * I) := by - simp [φ, rect_eq_quad, zw] ; sorry - have e2 : φ 1 = RectangleIntegral f z w := by - simp [φ, rect_eq_quad, zw] ; ring_nf - sorry + let w₁ := - c - c * I + let w₂ := c - c * I + let w₃ := c + c * I + let w₄ := - c + c * I + + rw [rect_eq_quad, rect_eq_quad, ← sub_eq_zero] + + have la1 : ContinuousOn f (Rectangle z (zw w₁ w)) := sorry + have la2 : QuadSupport z (zw z w) w₂ w₁ ⊆ Rectangle z (zw w₁ w) := sorry + have la3 : (∃ F, ∀ z_1 ∈ Rectangle z (zw w₁ w), HasDerivAt F (f z_1) z_1) := sorry + have la := QuadIntegral_cancel la1 la2 la3 ; clear la1 la2 la3 + + have lb1 : ContinuousOn f (Rectangle (zw z w₂) w) := sorry + have lb2 : QuadSupport (zw z w) w w₃ w₂ ⊆ Rectangle (zw z w₂) w := sorry + have lb3 : (∃ F, ∀ z_1 ∈ Rectangle (zw z w₂) w, HasDerivAt F (f z_1) z_1) := sorry + have lb := QuadIntegral_cancel lb1 lb2 lb3 ; clear lb1 lb2 lb3 + + have lc1 : ContinuousOn f (Rectangle (zw w₄ z) w) := sorry + have lc2 : QuadSupport w (zw w z) w₄ w₃ ⊆ Rectangle (zw w₄ z) w := sorry + have lc3 : (∃ F, ∀ z_1 ∈ Rectangle (zw w₄ z) w, HasDerivAt F (f z_1) z_1) := sorry + have lc := QuadIntegral_cancel lc1 lc2 lc3 ; clear lc1 lc2 lc3 + + have ld1 : ContinuousOn f (Rectangle z (zw w w₄)) := sorry + have ld2 : QuadSupport (zw w z) z w₁ w₄ ⊆ Rectangle z (zw w w₄) := sorry + have ld3 : (∃ F, ∀ z_1 ∈ Rectangle z (zw w w₄), HasDerivAt F (f z_1) z_1) := sorry + have ld := QuadIntegral_cancel ld1 ld2 ld3 ; clear ld1 ld2 ld3 + + have le := Mathlib.Tactic.LinearCombination.add_pf la lb + have lf := Mathlib.Tactic.LinearCombination.add_pf lc ld + have lg := Mathlib.Tactic.LinearCombination.add_pf le lf + simp [QuadIntegral] at lg ⊢ + convert lg using 1 ; clear lg + rw [← sub_eq_zero] + ring_nf + simp only [SegmentIntegral.symm (z := zw z w)] ; ring_nf + simp only [SegmentIntegral.symm (z := zw w z)] ; ring_nf + simp only [SegmentIntegral.symm (z := z)] ; ring_nf + simp only [SegmentIntegral.symm (z := w)] ; ring_nf + simp [zw] ; ring_nf + simp only [SegmentIntegral.symm (z := ↑c + ↑c * I)] ; ring_nf + simp only [SegmentIntegral.symm (z := -↑c - ↑c * I)] ; ring_nf lemma RectanglePullToNhdOfPole {f : ℂ → ℂ} {z w p : ℂ} (zRe_lt_wRe : z.re < w.re) (zIm_lt_wIm : z.im < w.im) (pInRectInterior : Rectangle z w ∈ nhds p)