forked from AndreasKuhnle/SimRLFab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hyper_tuner.py
371 lines (309 loc) · 16.4 KB
/
hyper_tuner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import argparse
import os
import pickle
import ConfigSpace as cs
from hpbandster.core.nameserver import NameServer, nic_name_to_host
from hpbandster.core.result import json_result_logger, logged_results_to_HBS_result
from hpbandster.core.worker import Worker
from hpbandster.optimizers import BOHB
import numpy as np
from tensorforce.environments import Environment
from tensorforce.execution import Runner
from production.envs.production_env import *
from production.envs import ProductionEnv
#######################################
#### RUN COMMAND by: & python hyper_tuner.py 'production.envs.ProductionEnv'
#######################################
TIMESTEPS = 10**2
NUM_EPISODES = 10**2
ITERATIONS = 10**1
class TensorforceWorker(Worker):
def __init__(self, *args, environment=None, **kwargs):
# def __init__(self, run_id, nameserver=None, nameserver_port=None, logger=None, host=None, id=None, timeout=None):
super().__init__(*args, **kwargs)
assert environment != None
self.environment = environment
def compute(self, config_id, config, budget, working_directory):
if self.environment.max_episode_timesteps() == None:
min_capacity = 1000 + config['batch_size']
else:
min_capacity = self.environment.max_episode_timesteps() + config['batch_size']
max_capacity = 100000
capacity = min(max_capacity, max(min_capacity, config['memory'] * config['batch_size']))
frequency = max(4, int(config['frequency'] * config['batch_size']))
if config['baseline'] == 'no':
baseline_policy = None
baseline_objective = None
baseline_optimizer = None
estimate_horizon = False
estimate_terminal = False
estimate_advantage = False
else:
estimate_horizon = 'late'
estimate_advantage = (config['estimate_advantage'] == 'yes')
if config['baseline'] == 'same-policy':
baseline_policy = None
baseline_objective = None
baseline_optimizer = None
elif config['baseline'] == 'auto':
# other modes, shared network/policy etc !!!
baseline_policy = dict(network=dict(type='auto', internal_rnn=False))
baseline_objective = dict(
type='value', value='state', huber_loss=0.0, early_reduce=False
)
baseline_optimizer = dict(
type='adam', learning_rate=config['baseline_learning_rate']
)
else:
assert False
if config['l2_regularization'] < 3e-5: # yes/no better
l2_regularization = 0.0
else:
l2_regularization = config['l2_regularization']
if config['entropy_regularization'] < 3e-5: # yes/no better
entropy_regularization = 0.0
else:
entropy_regularization = config['entropy_regularization']
# Set agent configuration according to configspace
print("### Set agent configuration according to configspace")
agent = dict(
agent='tensorforce',
policy=dict(network=dict(type='auto', internal_rnn=False)),
memory=dict(type='replay', capacity=capacity), # replay, recent
update=dict(unit='timesteps', batch_size=config['batch_size'], frequency=frequency), # timesteps, episode
optimizer=dict(type='adam', learning_rate=config['learning_rate']),
objective=dict(
type='policy_gradient', ratio_based=True, clipping_value=0.1,
early_reduce=False
),
reward_estimation=dict(
horizon=config['horizon'], discount=config['discount'],
estimate_horizon=estimate_horizon, estimate_actions=False,
estimate_terminal=False, estimate_advantage=estimate_advantage
),
baseline_policy=baseline_policy, baseline_objective=baseline_objective,
baseline_optimizer=baseline_optimizer,
preprocessing=None,
l2_regularization=l2_regularization, entropy_regularization=entropy_regularization
)
# Set state representation according to configspace
print("### Set state representation according to configspace")
# Example state configurations to evaluate
config_state = None
if config['state'] == 0:
config_state = []
elif config['state'] == 1:
config_state = ['bin_buffer_fill']
elif config['state'] == 2:
config_state = ['bin_buffer_fill', 'distance_to_action']
elif config['state'] == 3:
config_state = ['bin_buffer_fill', 'distance_to_action', 'bin_machine_failure']
elif config['state'] == 4:
config_state = ['bin_buffer_fill', 'distance_to_action', 'bin_machine_failure', 'order_waiting_time']
self.environment.environment.parameters.update({'TRANSP_AGENT_STATE': config_state})
self.environment.environment.parameters.update({'TRANSP_AGENT_REWARD': config['reward']})
#self.environment.environment.parameters.update({'TRANSP_AGENT_REWARD_INVALID_ACTION': config['reward_invalid']})
#self.environment.environment.parameters.update({'TRANSP_AGENT_REWARD_OBJECTIVE_WEIGHTS': config['reward_weighted']})
self.environment.environment.parameters.update({'TRANSP_AGENT_MAX_INVALID_ACTIONS': config['max_invalid_actions']})
self.environment.environment.parameters.update({'TRANSP_AGENT_WAITING_TIME_ACTION': config['waiting_if_invalid_actions']})
# num_episodes = list()
final_reward = list()
max_reward = list()
rewards = list()
for n in range(round(budget)):
runner = Runner(agent=agent, environment=self.environment)
#runner = Runner(agent='config/ppo2.json', environment=self.environment)
# performance_threshold = runner.environment.max_episode_timesteps() - agent['reward_estimation']['horizon']
# def callback(r, p):
# return True
runner.run(num_episodes=NUM_EPISODES, use_tqdm=False)
runner.close()
# num_episodes.append(len(runner.episode_rewards))
final_reward.append(float(np.mean(runner.episode_rewards[-20:], axis=0)))
average_rewards = [
float(np.mean(runner.episode_rewards[n: n + 20], axis=0))
for n in range(len(runner.episode_rewards) - 20)
]
max_reward.append(float(np.amax(average_rewards, axis=0)))
rewards.append(list(runner.episode_rewards))
# mean_num_episodes = float(np.mean(num_episodes, axis=0))
mean_final_reward = float(np.mean(final_reward, axis=0))
mean_max_reward = float(np.mean(max_reward, axis=0))
# loss = mean_num_episodes - mean_final_reward - mean_max_reward
loss = -mean_final_reward - mean_max_reward
return dict(loss=loss, info=dict(rewards=rewards))
@staticmethod
def get_configspace():
"""
It builds the configuration space with the needed hyperparameters.
It is easily possible to implement different types of hyperparameters.
Beside float-hyperparameters on a log scale, it is also able to handle categorical input parameter.
:return: ConfigurationsSpace-Object
"""
configspace = cs.ConfigurationSpace()
memory = cs.hyperparameters.UniformIntegerHyperparameter(name='memory', lower=2, upper=50)
configspace.add_hyperparameter(hyperparameter=memory)
batch_size = cs.hyperparameters.UniformIntegerHyperparameter(
name='batch_size', lower=32, upper=8192, log=True
)
configspace.add_hyperparameter(hyperparameter=batch_size)
frequency = cs.hyperparameters.UniformFloatHyperparameter(
name='frequency', lower=3e-2, upper=1.0, log=True
)
configspace.add_hyperparameter(hyperparameter=frequency)
learning_rate = cs.hyperparameters.UniformFloatHyperparameter(
name='learning_rate', lower=1e-5, upper=3e-2, log=True
)
configspace.add_hyperparameter(hyperparameter=learning_rate)
horizon = cs.hyperparameters.UniformIntegerHyperparameter(
name='horizon', lower=1, upper=50
)
configspace.add_hyperparameter(hyperparameter=horizon)
discount = cs.hyperparameters.UniformFloatHyperparameter(
name='discount', lower=0.8, upper=1.0, log=True
)
configspace.add_hyperparameter(hyperparameter=discount)
baseline = cs.hyperparameters.CategoricalHyperparameter(
name='baseline', choices=('no', 'auto', 'same-policy')
)
configspace.add_hyperparameter(hyperparameter=baseline)
baseline_learning_rate = cs.hyperparameters.UniformFloatHyperparameter(
name='baseline_learning_rate', lower=1e-5, upper=3e-2, log=True
)
configspace.add_hyperparameter(hyperparameter=baseline_learning_rate)
estimate_advantage = cs.hyperparameters.CategoricalHyperparameter(
name='estimate_advantage', choices=('no', 'yes')
)
configspace.add_hyperparameter(hyperparameter=estimate_advantage)
l2_regularization = cs.hyperparameters.UniformFloatHyperparameter(
name='l2_regularization', lower=1e-5, upper=1.0, log=True
)
configspace.add_hyperparameter(hyperparameter=l2_regularization)
entropy_regularization = cs.hyperparameters.UniformFloatHyperparameter(
name='entropy_regularization', lower=1e-5, upper=1.0, log=True
)
configspace.add_hyperparameter(hyperparameter=entropy_regularization)
state = cs.hyperparameters.CategoricalHyperparameter(
name='state', choices=(0, 1, 2, 3, 4)
)
configspace.add_hyperparameter(hyperparameter=state)
reward = cs.hyperparameters.CategoricalHyperparameter(
name='reward', choices=('valid_action', 'utilization', 'waiting_time_normalized')
)
configspace.add_hyperparameter(hyperparameter=reward)
"""
reward_invalid = cs.hyperparameters.UniformFloatHyperparameter(
name='reward_invalid', lower=-1.0, upper=0.0
)
configspace.add_hyperparameter(hyperparameter=reward_invalid)
"""
"""
reward_weighted = cs.hyperparameters.CategoricalHyperparameter(
name='reward_weighted', choices=({'utilization': 1.0, 'waiting_time': 1.0}) # {'inventory_balance': 1.0, 'transport_time': 1.0}
) # Alternatives: 'utilization': 1.0, 'waiting_time': 1.0, 'transport_time': 1.0, 'inventory_balance': 1.0
configspace.add_hyperparameter(hyperparameter=reward_weighted)
configspace.add_condition(
condition=cs.EqualsCondition(
child=reward_weighted, parent=reward, value='weighted_objectives'
)
)
"""
max_invalid_actions = cs.hyperparameters.UniformIntegerHyperparameter(
name='max_invalid_actions', lower=1, upper=10
)
configspace.add_hyperparameter(hyperparameter=max_invalid_actions)
waiting_if_invalid_actions = cs.hyperparameters.UniformIntegerHyperparameter(
name='waiting_if_invalid_actions', lower=1, upper=10
)
configspace.add_hyperparameter(hyperparameter=waiting_if_invalid_actions)
configspace.add_condition(
condition=cs.NotEqualsCondition(
child=baseline_learning_rate, parent=baseline, value='no'
)
)
configspace.add_condition(
condition=cs.NotEqualsCondition(
child=estimate_advantage, parent=baseline, value='no'
)
)
return configspace
def main():
parser = argparse.ArgumentParser(description='Tensorforce hyperparameter tuner')
parser.add_argument(
'environment', help='Environment (name, configuration JSON file, or library module)'
)
parser.add_argument(
'-l', '--level', type=str, default=None,
help='Level or game id, like `CartPole-v1`, if supported'
)
parser.add_argument(
'-m', '--max-repeats', type=int, default=1, help='Maximum number of repetitions'
)
parser.add_argument(
'-n', '--num-iterations', type=int, default=ITERATIONS, help='Number of BOHB iterations'
)
parser.add_argument(
'-d', '--directory', type=str, default='tuner', help='Output directory'
)
parser.add_argument(
'-r', '--restore', type=str, default=None, help='Restore from given directory'
)
parser.add_argument('--id', type=str, default='worker', help='Unique worker id')
args = parser.parse_args()
print(args.environment)
if args.level == None:
environment = Environment.create(environment=args.environment, max_episode_timesteps=TIMESTEPS) # , max_episode_timesteps=timesteps
else:
environment = Environment.create(environment=args.environment, level=args.level)
if False:
host = nic_name_to_host(nic_name=None)
port = 123
else:
host = 'localhost'
port = None
server = NameServer(run_id=args.id, working_directory=args.directory, host=host, port=port)
nameserver, nameserver_port = server.start()
worker = TensorforceWorker(
environment=environment, run_id=args.id, nameserver=nameserver,
nameserver_port=nameserver_port, host=host
)
# TensorforceWorker(run_id, nameserver=None, nameserver_port=None, logger=None, host=None, id=None, timeout=None)
# logger: logging.logger instance, logger used for debugging output
# id: anything with a __str__method, if multiple workers are started in the same process, you MUST provide a unique id for each one of them using the `id` argument.
# timeout: int or float, specifies the timeout a worker will wait for a new after finishing a computation before shutting down. Towards the end of a long run with multiple workers, this helps to shutdown idling workers. We recommend a timeout that is roughly half the time it would take for the second largest budget to finish. The default (None) means that the worker will wait indefinitely and never shutdown on its own.
worker.run(background=True)
# config = cs.sample_configuration().get_dictionary()
# print(config)
# res = worker.compute(config=config, budget=1, working_directory='.')
# print(res)
if args.restore == None:
previous_result = None
else:
previous_result = logged_results_to_HBS_result(directory=args.restore)
result_logger = json_result_logger(directory=args.directory, overwrite=True) # ???
optimizer = BOHB(
configspace=worker.get_configspace(), min_budget=0.5, max_budget=float(args.max_repeats),
run_id=args.id, working_directory=args.directory,
nameserver=nameserver, nameserver_port=nameserver_port, host=host,
result_logger=result_logger, previous_result=previous_result
)
# BOHB(configspace=None, eta=3, min_budget=0.01, max_budget=1, min_points_in_model=None, top_n_percent=15, num_samples=64, random_fraction=1 / 3, bandwidth_factor=3, min_bandwidth=1e-3, **kwargs)
# Master(run_id, config_generator, working_directory='.', ping_interval=60, nameserver='127.0.0.1', nameserver_port=None, host=None, shutdown_workers=True, job_queue_sizes=(-1,0), dynamic_queue_size=True, logger=None, result_logger=None, previous_result = None)
# logger: logging.logger like object, the logger to output some (more or less meaningful) information
results = optimizer.run(n_iterations=args.num_iterations)
# optimizer.run(n_iterations=1, min_n_workers=1, iteration_kwargs={})
# min_n_workers: int, minimum number of workers before starting the run
optimizer.shutdown(shutdown_workers=True)
server.shutdown()
environment.close()
with open(os.path.join(args.directory, 'results.pkl'), 'wb') as filehandle:
pickle.dump(results, filehandle)
print('Best found configuration:', results.get_id2config_mapping()[results.get_incumbent_id()]['config'])
print('Runs:', results.get_runs_by_id(config_id=results.get_incumbent_id()))
print('A total of {} unique configurations where sampled.'.format(len(results.get_id2config_mapping())))
print('A total of {} runs where executed.'.format(len(results.get_all_runs())))
print('Total budget corresponds to {:.1f} full function evaluations.'.format(
sum([r.budget for r in results.get_all_runs()]) / args.max_repeats)
)
if __name__ == '__main__':
main()