forked from zfgao66/MatAltMag
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nwr_gae_layers.py
119 lines (101 loc) · 4.39 KB
/
nwr_gae_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""
@reference: https://github.com/mtang724/NWR-GAE
"""
import torch.nn as nn
import torch
import torch.nn.functional as F
class MLP(nn.Module):
def __init__(self, num_layers, input_dim, hidden_dim, output_dim):
'''
num_layers: number of layers in the neural networks (EXCLUDING the input layer). If num_layers=1, this reduces to linear model.
input_dim: dimensionality of input features
hidden_dim: dimensionality of hidden units at ALL layers
output_dim: number of classes for prediction
device: which device to use
'''
super(MLP, self).__init__()
self.linear_or_not = True # default is linear model
self.num_layers = num_layers
if num_layers < 1:
raise ValueError("number of layers should be positive!")
elif num_layers == 1:
# Linear model
self.linear = nn.Linear(input_dim, output_dim)
else:
# Multi-layer model
self.linear_or_not = False
self.linears = torch.nn.ModuleList()
self.batch_norms = torch.nn.ModuleList()
self.linears.append(nn.Linear(input_dim, hidden_dim))
for layer in range(num_layers - 2):
self.linears.append(nn.Linear(hidden_dim, hidden_dim))
self.linears.append(nn.Linear(hidden_dim, output_dim))
for layer in range(num_layers - 1):
self.batch_norms.append(nn.BatchNorm1d((hidden_dim)))
def forward(self, x):
if self.linear_or_not:
# If linear model
return self.linear(x)
else:
# If MLP
h = x
for layer in range(self.num_layers - 1):
h = F.relu(self.batch_norms[layer](self.linears[layer](h)))
return self.linears[self.num_layers - 1](h)
class FNN(nn.Module):
def __init__(self, in_features, hidden, out_features, layer_num):
super(FNN, self).__init__()
self.linear1 = MLP(layer_num, in_features, hidden, out_features)
self.linear2 = nn.Linear(out_features, out_features)
def forward(self, embedding):
x = self.linear1(embedding)
x = self.linear2(F.relu(x))
return x
class MLPGenerator(nn.Module):
def __init__(self, input_dim, output_dim):
super(MLPGenerator, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.linear2 = nn.Linear(output_dim, output_dim)
self.linear3 = nn.Linear(output_dim, output_dim)
self.linear4 = nn.Linear(output_dim, output_dim)
def forward(self, embedding):
neighbor_embedding = F.relu(self.linear(embedding))
neighbor_embedding = F.relu(self.linear2(neighbor_embedding))
neighbor_embedding = F.relu(self.linear3(neighbor_embedding))
neighbor_embedding = self.linear4(neighbor_embedding)
return neighbor_embedding
class PairNorm(nn.Module):
def __init__(self, mode='PN', scale=10):
"""
mode:
'None' : No normalization
'PN' : Original version
'PN-SI' : Scale-Individually version
'PN-SCS' : Scale-and-Center-Simultaneously version
('SCS'-mode is not in the paper but we found it works well in practice,
especially for GCN and GAT.)
PairNorm is typically used after each graph convolution operation.
"""
assert mode in ['None', 'PN', 'PN-SI', 'PN-SCS']
super(PairNorm, self).__init__()
self.mode = mode
self.scale = scale
# Scale can be set based on origina data, and also the current feature lengths.
# We leave the experiments to future. A good pool we used for choosing scale:
# [0.1, 1, 10, 50, 100]
def forward(self, x):
if self.mode == 'None':
return x
col_mean = x.mean(dim=0)
if self.mode == 'PN':
x = x - col_mean
rownorm_mean = (1e-6 + x.pow(2).sum(dim=1).mean()).sqrt()
x = self.scale * x / rownorm_mean
if self.mode == 'PN-SI':
x = x - col_mean
rownorm_individual = (1e-6 + x.pow(2).sum(dim=1, keepdim=True)).sqrt()
x = self.scale * x / rownorm_individual
if self.mode == 'PN-SCS':
rownorm_individual = (1e-6 + x.pow(2).sum(dim=1, keepdim=True)).sqrt()
x = self.scale * x / rownorm_individual - col_mean
return x