Skip to content

Latest commit

 

History

History
53 lines (37 loc) · 1.76 KB

File metadata and controls

53 lines (37 loc) · 1.76 KB

Classify Single Image

This example demonstrates how to classify a single image using one of the TensorFlow pretrained models converted to TensorRT.

Running the Example

If you haven't already, follow the installation instructions here.

Convert Frozen Model to PLAN

Assuming you have a trained and frozen image classification model, convert it to a plan using the following convert_plan script.

python scripts/convert_plan.py data/frozen_graphs/inception_v1.pb data/plans/inception_v1.plan input 224 224 InceptionV1/Logits/SpatialSqueeze 1 1048576 float

For reference, the inputs to the convert_plan.py script are

  1. frozen graph path
  2. output plan path
  3. input node name
  4. input height
  5. input width
  6. output node name
  7. max batch size
  8. max workspace size
  9. data type (float or half)

Run the example program

Once the plan file is generated, run the example Cpp/CUDA program to classify the image.

./build/examples/classify_image/classify_image data/images/gordon_setter.jpg data/plans/inception_v1.plan data/imagenet_labels_1001.txt input InceptionV1/Logits/SpatialSqueeze inception

You should see that the most probable index is 215, which using our label file corresponds to a "Gordon setter". For reference, the inputs to the classify_image example are

  1. input image path
  2. plan file path
  3. labels file (one label per line, line number corresponds to index in output)
  4. input node name
  5. output node name
  6. preprocessing function (either vgg or inception. see: this)

To use other networks, supply the classify_image executable with arguments corresponding to the default networks table (link). You will need to generate the corresponding PLAN file as well.