forked from sxhxliang/BigGAN-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
103 lines (88 loc) · 3.28 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from scipy.stats import truncnorm
import numpy as np
dim_z = 120
vocab_size = 1000
def truncated_z_sample(batch_size, truncation=1., seed=None):
state = None if seed is None else np.random.RandomState(seed)
values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state)
return truncation * values
def one_hot(index, vocab_size=vocab_size):
index = np.asarray(index)
if len(index.shape) == 0:
index = np.asarray([index])
assert len(index.shape) == 1
num = index.shape[0]
output = np.zeros((num, vocab_size), dtype=np.float32)
output[np.arange(num), index] = 1
return output
def one_hot_if_needed(label, vocab_size=vocab_size):
label = np.asarray(label)
if len(label.shape) <= 1:
label = one_hot(label, vocab_size)
assert len(label.shape) == 2
return label
def sample(noise, label, truncation=1., batch_size=8, vocab_size=vocab_size):
noise = np.asarray(noise)
label = np.asarray(label)
num = noise.shape[0]
if len(label.shape) == 0:
label = np.asarray([label] * num)
if label.shape[0] != num:
raise ValueError('Got # noise samples ({}) != # label samples ({})'
.format(noise.shape[0], label.shape[0]))
label = one_hot_if_needed(label, vocab_size)
ims = []
for batch_start in range(0, num, batch_size):
s = slice(batch_start, min(num, batch_start + batch_size))
feed_dict = {'input_z': noise[s],
'input_y': label[s], 'input_trunc': truncation}
return feed_dict
# ims.append(sess.run(output, feed_dict=feed_dict))
# ims = np.concatenate(ims, axis=0)
# assert ims.shape[0] == num
# ims = np.clip(((ims + 1) / 2.0) * 256, 0, 255)
# ims = np.uint8(ims)
# return ims
def interpolate(A, B, num_interps):
alphas = np.linspace(0, 1, num_interps)
if A.shape != B.shape:
raise ValueError('A and B must have the same shape to interpolate.')
return np.array([(1-a)*A + a*B for a in alphas])
def imgrid(imarray, cols=5, pad=1):
if imarray.dtype != np.uint8:
raise ValueError('imgrid input imarray must be uint8')
pad = int(pad)
assert pad >= 0
cols = int(cols)
assert cols >= 1
N, H, W, C = imarray.shape
rows = int(np.ceil(N / float(cols)))
batch_pad = rows * cols - N
assert batch_pad >= 0
post_pad = [batch_pad, pad, pad, 0]
pad_arg = [[0, p] for p in post_pad]
imarray = np.pad(imarray, pad_arg, 'constant', constant_values=255)
H += pad
W += pad
grid = (imarray
.reshape(rows, cols, H, W, C)
.transpose(0, 2, 1, 3, 4)
.reshape(rows*H, cols*W, C))
if pad:
grid = grid[:-pad, :-pad]
return grid
def imshow(a, format='png', jpeg_fallback=True):
a = np.asarray(a, dtype=np.uint8)
str_file = cStringIO.StringIO()
PIL.Image.fromarray(a).save(str_file, format)
png_data = str_file.getvalue()
try:
disp = IPython.display.display(IPython.display.Image(png_data))
except IOError:
if jpeg_fallback and format != 'jpeg':
print('Warning: image was too large to display in format "{}"; '
'trying jpeg instead.').format(format)
return imshow(a, format='jpeg')
else:
raise
return disp