-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.R
525 lines (404 loc) · 9.75 KB
/
main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#set directory
setwd("C:/dev/repos/R/datas_r")
#read file
cars <- read.table(file = "cars.txt", header = TRUE, sep = "\t", quote = "\"")
#look
head(cars)
#using dplyr package
#library(dplyr)
# Select a subset of columns
temp <- select(
.data = cars,
Transmission,
Cylinders,
Fuel.Economy)
# Inspect the results
head(temp)
# Filter a subset of rows
temp <- filter(
.data = temp,
Transmission == "Automatic")
# Inspect the results
head(temp)
# Compute a new column
#create a new column that represent the consumption of km/l
temp <- mutate(
.data = temp,
Consumption = Fuel.Economy * 0.425)
# Inspect the results
head(temp)
# Group by a column
#returns a gruoup by data frame instead
temp <- group_by(
.data = temp,
Cylinders)
# Inspect the results
head(temp)
# Aggregate based on groups
temp <- summarize(
.data = temp,
Avg.Consumption = mean(Consumption))
# Inspect the results
head(temp)
# Arrange the rows in descending order
temp <- arrange(
.data = temp,
desc(Avg.Consumption))
# Inspect the results
head(temp)
# Convert to data frame
efficiency <- as.data.frame(temp)
# Inspect the results
print(efficiency)
# Chain methods together
efficiency <- cars %>%
select(Fuel.Economy, Cylinders, Transmission) %>%
filter(Transmission == "Automatic") %>%
mutate(Consumption = Fuel.Economy * 0.425) %>%
group_by(Cylinders) %>%
summarize(Avg.Consumption = mean(Consumption)) %>%
arrange(desc(Avg.Consumption)) %>%
as.data.frame()
# Inspect the results
print(efficiency)
# Save the results to a CSV file
write.csv(
x = efficiency,
file = "Fuel Efficiency.csv",
row.names = FALSE)
#############################################################
# Creating Descriptive Statistics
# Set the working directory
setwd("C:/dev/repos/R/datas_r")
# Read a CSV data file
cars <- read.csv("Cars.csv")
# Peek at the data
head(cars)
# Create a frequency table - look for number of occurrencies
table(cars$Transmission)
# Get the minimum value
min(cars$Fuel.Economy)
# Get the maximum value
max(cars$Fuel.Economy)
# Get the average value
mean(cars$Fuel.Economy)
# Get the median value
median(cars$Fuel.Economy)
# Get the quartiles
quantile(cars$Fuel.Economy)
# Get the standard deviation
sd(cars$Fuel.Economy)
# Get the total value
sum(cars$Fuel.Economy)
# Get the correlation coefficient
cor(
x = cars$Cylinders,
y = cars$Fuel.Economy)
# Summarize an entire table
summary(cars)
########################################################
# Creating Data Visualization
# Read the CSV file
cars <- read.csv("Cars.csv")
# Load the ggplot2 library
library(ggplot2)
# Create a frequency bar chart
ggplot(
data = cars,
aes(x = Transmission)) +
geom_bar() +
ggtitle("Count of Cars by Transmission Type") +
xlab("Transmission Type") +
ylab("Count of Cars")
# Create a histogram
ggplot(
data = cars,
aes(x = Fuel.Economy)) +
geom_histogram(
bins = 100) +
ggtitle("Distribution of Fuel Economy") +
xlab("Fuel Economy (mpg)") +
ylab("Count of Cars")
# Create a density plot
ggplot(
data = cars,
aes(x = Fuel.Economy)) +
geom_density() +
ggtitle("Distribution of Fuel Economy") +
xlab("Fuel Economy (mpg)") +
ylab("Density")
# Create a scatterplot
ggplot(
data = cars,
aes(
x = Cylinders,
y = Fuel.Economy)) +
geom_point() +
ggtitle("Fuel Economy by Cylinders") +
xlab("Number of Cylinders") +
ylab("Fuel Economy (mpg)")
###########################################################################
# Creating Statistical Models
# Load the data - it is pre intalled with R
data(iris)
# Peak at data
head(iris)
# Create a scatterplot
plot(
x = iris$Petal.Length,
y = iris$Petal.Width,
main = "Iris Petal Length vs. Width",
xlab = "Petal Length (cm)",
ylab = "Petal Width (cm)")
# Create a linear regression model
model <- lm(
formula = Petal.Width ~ Petal.Length,
data = iris)
# Summarize the model
summary(model)
# Draw a regression line on plot
lines(
x = iris$Petal.Length,
y = model$fitted,
col = "red",
lwd = 3)
# Get correlation coefficient
cor(
x = iris$Petal.Length,
y = iris$Petal.Width)
# Predict new values from the model
predict(
object = model,
newdata = data.frame(
Petal.Length = c(2, 5, 7)))
#############################################################################
# Handling Big Data
# Set working directory
setwd("C:/dev/repos/R/datas_r")
# Load the ff package
library(ff)
# Read a CSV file as ff data frame
irisff <- read.table.ffdf(
file = "Iris.csv",
FUN = "read.csv")
# Inspect the class
class(irisff)
# Inspect the column names
names(irisff)
# Inspect the first few rows
irisff[1:5,]
# Load the biglm package
library(biglm)
# Create a linear regression model
model <- biglm(
formula = Petal.Width ~ Petal.Length,
data = irisff)
# Summarize the model
summary(model)
# Create a scatterplot
plot(
x = irisff$Petal.Length[],
y = irisff$Petal.Width[],
main = "Iris Petal Length vs. Width",
xlab = "Petal Length (cm)",
ylab = "Petal Width (cm)")
# Get y-intercept from model
b <- summary(model)$mat[1,1]
# Get slope from model
m <- summary(model)$mat[2,1]
# Draw a regression line on plot
lines(
x = irisff$Petal.Length[],
y = m * irisff$Petal.Length[] + b,
col = "red",
lwd = 3)
# Predict new values with the model
predict(
object = model,
newdata = data.frame(
Petal.Length = c(2, 5, 7),
Petal.Width = c(0, 0, 0)))
######################################################################
# Predicting with Machine Learning
# Load the data
data(iris)
# Set a seed to make randomness reproducible
set.seed(42)
# Randomly sample 100 of 150 row indexes
indexes <- sample(
x = 1:150,
size = 100)
# Inspect the random indexes
print(indexes)
# Create a training set from indexes
train <- iris[indexes, ]
# Create a test set from remaining indexes
test <- iris[-indexes, ]
# Load the decision tree package
library(tree)
# Train a decision tree model
model <- tree(
formula = Species ~ .,
data = train)
# Inspect the model
summary(model)
# Visualize the decision tree model
plot(model)
text(model)
# Load color brewer library
library(RColorBrewer)
# Create a color palette
palette <- brewer.pal(3, "Set2")
# Create a scatterplot colored by species
plot(
x = iris$Petal.Length,
y = iris$Petal.Width,
pch = 19,
col = palette[as.numeric(iris$Species)],
main = "Iris Petal Length vs. Width",
xlab = "Petal Length (cm)",
ylab = "Petal Width (cm)")
# Plot the decision boundaries
partition.tree(
tree = model,
label = "Species",
add = TRUE)
# Predict with the model
predictions <- predict(
object = model,
newdata = test,
type = "class")
# Create a confusion matrix
table(
x = predictions,
y = test$Species)
# Load the caret package
library(caret)
# Evaluate the prediction results
confusionMatrix(
data = predictions,
reference = test$Species)
# Set working directory
setwd("C:/dev/repos/R/datas_r")
# Save the tree model
save(model, file = "Tree.RData")
# Save the training data
save(train, file = "Train.RData")
#############################################################################
# Deploying to Production
# Load shiny
library(shiny)
# Create a UI
ui <- fluidPage("Hello World!")
# Create a server
server <- function(input, output) {}
# Create a shiny app
shinyApp(
ui = ui,
server = server)
# Create a UI with I/O controls
ui <- fluidPage(
titlePanel("Input and Output"),
sidebarLayout(
sidebarPanel(
sliderInput(
inputId = "num",
label = "Choose a Number",
min = 0,
max = 100,
value = 25)),
mainPanel(
textOutput(
outputId = "text"))))
# Create a server than maps input to output
server <- function(input, output) {
output$text <- renderText({
paste("You selected ", input$num )})
}
# Create a shiny app
shinyApp(
ui = ui,
server = server)
# Load decision tree package
library(tree)
# Set working directory
setwd("C:/Pluralsight")
# Load training data
load("Train.RData")
# Load tree model
load("Tree.RData")
# Load color brewer library
library(RColorBrewer)
# Create a color palette
palette <- brewer.pal(3, "Set2")
# Create user interface code
ui <- fluidPage(
titlePanel("Iris Species Predictor"),
sidebarLayout(
sidebarPanel(
sliderInput(
inputId = "petal.length",
label = "Petal Length (cm)",
min = 1,
max = 7,
value = 4),
sliderInput(
inputId = "petal.width",
label = "Petal Width (cm)",
min = 0.0,
max = 2.5,
step = 0.5,
value = 1.5)),
mainPanel(
textOutput(
outputId = "text"),
plotOutput(
outputId = "plot"))))
# Create server code
server <- function(input, output) {
output$text = renderText({
# Create predictors
predictors <- data.frame(
Petal.Length = input$petal.length,
Petal.Width = input$petal.width,
Sepal.Length = 0,
Sepal.Width = 0)
# Make prediction
prediction = predict(
object = model,
newdata = predictors,
type = "class")
# Create prediction text
paste(
"The predicted species is ",
as.character(prediction))
})
output$plot = renderPlot({
# Create a scatterplot colored by species
plot(
x = iris$Petal.Length,
y = iris$Petal.Width,
pch = 19,
col = palette[as.numeric(iris$Species)],
main = "Iris Petal Length vs. Width",
xlab = "Petal Length (cm)",
ylab = "Petal Width (cm)")
# Plot the decision boundaries
partition.tree(
model,
label = "Species",
add = TRUE)
# Draw predictor on plot
points(
x = input$petal.length,
y = input$petal.width,
col = "red",
pch = 4,
cex = 2,
lwd = 2)
})
}
# Create a shiny app
shinyApp(
ui = ui,
server = server)