Skip to content

Latest commit

 

History

History
100 lines (83 loc) · 8.31 KB

comparison.md

File metadata and controls

100 lines (83 loc) · 8.31 KB

Comparing numbers

Setup

We are comparing the difference between two different sets of parameters, namely:

# A
max_vocab = '15000'
preprocessor = 'v2'
feature_set = ['text']

T = '150'
s = '10'
num_clauses = '5000'



# B
max_vocab = '15000'
preprocessor = 'v2'
feature_set = ['text']

T = '200' # + 50
s = '15' # + 5
num_clauses = '10000' # + 5000

Metrics @ Epoch 150

Model A accuracy B accuracy ∆% accuracy A precision B precision ∆% precision A recall B recall ∆% recall A F1 B F1 ∆% F1
FakeNewsNet
FakeNewsNet-politifact 0.7594 0.7217 -4.96% 0.7518 0.7453 -0.86% 0.7695 0.7584 -1.44% 0.7527 0.7206 -4.26%
FakeNewsNet-gossipcop
FakeCovid
HateXPlain 0.4161 0.4104 -1.36% 0.3214 0.3198 -0.49% 0.5286 0.4823 -8.75% 0.3672 0.3593 -2.15%
HateXPlain-binary
fake-news-datasets
fake-news-datasets-deception-FakeNewsAMT 0.4745 0.5000 5.37% 0.4745 0.4970 4.74% 0.4763 0.4972 4.38% 0.4678 0.4891 4.55%
fake-news-datasets-deception-Celebrity 0.7000 0.7300 4.28% 0.6981 0.7325 4.92% 0.6965 0.7226 3.74% 0.6970 0.7238 3.84%
fake-news-datasets-Election-Day 0.8534 0.8759 2.63% 0.6341 0.6682 5.37% 0.6720 0.6846 1.87% 0.6489 0.6758 4.14%
fake-news-datasets-FakeNewsChallenge
fake-news-datasets-FakeNewsChallenge-body
fake-news-datasets-FakeNewsCorpus
fake-news-datasets-FakeNewsCorpus-body
hate-speech-dataset 0.6117 0.7168 17.18% 0.5833 0.5974 2.41% 0.7246 0.7359 1.55% 0.5218 0.5870 12.49%

Other metrics from papers

Model Accuracy Precision Recall F1
FakeNewsNet-politifact
HateXPlain* 0.698 0.687
fake-news-datasets-deception-FakeNewsAMT 0.500
fake-news-datasets-deception-Celebrity 0.640
fake-news-datasets-Election-Day - - - -
hate-speech-dataset 0.730

Note: significant numbers not preserved
* Likely different preprocessing

Other hyper-parameters

Model (Using B) p=.25 acc p=.75 acc p=.25 prec p=.75 prec p=.25 rec p=.75 rec p=.25 f1 p=.75 f1
fake-news-datasets-Election-Day 0.7782 0.8759 0.5978 0.6682 0.6959 0.6846 0.6089 0.6758
fake-news-datasets-deception-FakeNewsAMT** 0.4688 0.5000 0.4639 0.4970 0.4661 0.4972 0.4588 0.4891
fake-news-datasets-deception-Celebrity** 0.7200 0.7300 0.7182 0.7325 0.7182 0.7226 0.7182 0.7238
Model (Using A) Accuracy Precision Recall F1
fake-news-datasets-Election-Day max-literals=3 0.7932 0.6005 0.6878 0.6149
fake-news-datasets-Election-Day max-literals=8 0.8346 0.6198 0.6780 0.6381
fake-news-datasets-Election-Day max-literals=16 0.8459 0.6104 0.6350 0.6204
fake-news-datasets-Election-Day max-literals=32 0.8459 0.6250 0.6678 0.6407
fake-news-datasets-deception-FakeNewsAMT max-literals=3** 0.5104 0.5081 0.5074 0.4982
fake-news-datasets-deception-FakeNewsAMT max-literals=8** 0.4583 0.4559 0.4568 0.4545
fake-news-datasets-deception-FakeNewsAMT max-literals=16** 0.4896 0.4881 0.4883 0.4869
fake-news-datasets-deception-FakeNewsAMT max-literals=32** 0.5312 0.5308 0.5282 0.5195
fake-news-datasets-deception-Celebrity max-literals=3** 0.7600 0.7657 0.7520 0.7537
fake-news-datasets-deception-Celebrity max-literals=8** 0.7300 0.7303 0.7242 0.7254
fake-news-datasets-deception-Celebrity max-literals=16** 0.7300 0.7355 0.7210 0.7220
fake-news-datasets-deception-Celebrity max-literals=32** 0.7200 0.7208 0.7134 0.7144
Model (Using B) Accuracy Precision Recall F1
fake-news-datasets-Election-Day max-literals=3 0.8346 0.6198 0.6780 0.6381
fake-news-datasets-Election-Day max-literals=8 0.8459 0.6315 0.6843 0.6499
fake-news-datasets-Election-Day max-literals=16 0.8496 0.6294 0.6699 0.6448
fake-news-datasets-Election-Day max-literals=32 0.8835 0.6677 0.6395 0.6516
fake-news-datasets-deception-FakeNewsAMT max-literals=3** 0.4062 0.4034 0.4049 0.4031
fake-news-datasets-deception-FakeNewsAMT max-literals=8** 0.4688 0.4651 0.4666 0.4617
fake-news-datasets-deception-FakeNewsAMT max-literals=16** 0.4062 0.4034 0.4049 0.4031
fake-news-datasets-deception-FakeNewsAMT max-literals=32** 0.4271 0.4215 0.4249 0.4195
fake-news-datasets-deception-Celebrity max-literals=3** 0.7300 0.7447 0.7178 0.7175
fake-news-datasets-deception-Celebrity max-literals=8** 0.7400 0.7397 0.7351 0.7362
fake-news-datasets-deception-Celebrity max-literals=16** 0.7200 0.7233 0.7118 0.7126
fake-news-datasets-deception-Celebrity max-literals=32** 0.7200 0.7208 0.7134 0.7144

** Overfitted (100% +- 2% accuracy on train data)