We are comparing the difference between two different sets of parameters, namely:
# A
max_vocab = '15000'
preprocessor = 'v2'
feature_set = ['text' ]
T = '150'
s = '10'
num_clauses = '5000'
# B
max_vocab = '15000'
preprocessor = 'v2'
feature_set = ['text' ]
T = '200' # + 50
s = '15' # + 5
num_clauses = '10000' # + 5000
Model
A accuracy
B accuracy
∆% accuracy
A precision
B precision
∆% precision
A recall
B recall
∆% recall
A F1
B F1
∆% F1
FakeNewsNet
FakeNewsNet-politifact
0.7594
0.7217
-4.96%
0.7518
0.7453
-0.86%
0.7695
0.7584
-1.44%
0.7527
0.7206
-4.26%
FakeNewsNet-gossipcop
FakeCovid
HateXPlain
0.4161
0.4104
-1.36%
0.3214
0.3198
-0.49%
0.5286
0.4823
-8.75%
0.3672
0.3593
-2.15%
HateXPlain-binary
fake-news-datasets
fake-news-datasets-deception-FakeNewsAMT
0.4745
0.5000
5.37%
0.4745
0.4970
4.74%
0.4763
0.4972
4.38%
0.4678
0.4891
4.55%
fake-news-datasets-deception-Celebrity
0.7000
0.7300
4.28%
0.6981
0.7325
4.92%
0.6965
0.7226
3.74%
0.6970
0.7238
3.84%
fake-news-datasets-Election-Day
0.8534
0.8759
2.63%
0.6341
0.6682
5.37%
0.6720
0.6846
1.87%
0.6489
0.6758
4.14%
fake-news-datasets-FakeNewsChallenge
fake-news-datasets-FakeNewsChallenge-body
fake-news-datasets-FakeNewsCorpus
fake-news-datasets-FakeNewsCorpus-body
hate-speech-dataset
0.6117
0.7168
17.18%
0.5833
0.5974
2.41%
0.7246
0.7359
1.55%
0.5218
0.5870
12.49%
Other metrics from papers
Model
Accuracy
Precision
Recall
F1
FakeNewsNet-politifact
HateXPlain*
0.698
0.687
fake-news-datasets-deception-FakeNewsAMT
0.500
fake-news-datasets-deception-Celebrity
0.640
fake-news-datasets-Election-Day
-
-
-
-
hate-speech-dataset
0.730
Note: significant numbers not preserved
* Likely different preprocessing
Model (Using B)
p=.25 acc
p=.75 acc
p=.25 prec
p=.75 prec
p=.25 rec
p=.75 rec
p=.25 f1
p=.75 f1
fake-news-datasets-Election-Day
0.7782
0.8759
0.5978
0.6682
0.6959
0.6846
0.6089
0.6758
fake-news-datasets-deception-FakeNewsAMT**
0.4688
0.5000
0.4639
0.4970
0.4661
0.4972
0.4588
0.4891
fake-news-datasets-deception-Celebrity**
0.7200
0.7300
0.7182
0.7325
0.7182
0.7226
0.7182
0.7238
Model (Using A)
Accuracy
Precision
Recall
F1
fake-news-datasets-Election-Day max-literals=3
0.7932
0.6005
0.6878
0.6149
fake-news-datasets-Election-Day max-literals=8
0.8346
0.6198
0.6780
0.6381
fake-news-datasets-Election-Day max-literals=16
0.8459
0.6104
0.6350
0.6204
fake-news-datasets-Election-Day max-literals=32
0.8459
0.6250
0.6678
0.6407
fake-news-datasets-deception-FakeNewsAMT max-literals=3**
0.5104
0.5081
0.5074
0.4982
fake-news-datasets-deception-FakeNewsAMT max-literals=8**
0.4583
0.4559
0.4568
0.4545
fake-news-datasets-deception-FakeNewsAMT max-literals=16**
0.4896
0.4881
0.4883
0.4869
fake-news-datasets-deception-FakeNewsAMT max-literals=32**
0.5312
0.5308
0.5282
0.5195
fake-news-datasets-deception-Celebrity max-literals=3**
0.7600
0.7657
0.7520
0.7537
fake-news-datasets-deception-Celebrity max-literals=8**
0.7300
0.7303
0.7242
0.7254
fake-news-datasets-deception-Celebrity max-literals=16**
0.7300
0.7355
0.7210
0.7220
fake-news-datasets-deception-Celebrity max-literals=32**
0.7200
0.7208
0.7134
0.7144
Model (Using B)
Accuracy
Precision
Recall
F1
fake-news-datasets-Election-Day max-literals=3
0.8346
0.6198
0.6780
0.6381
fake-news-datasets-Election-Day max-literals=8
0.8459
0.6315
0.6843
0.6499
fake-news-datasets-Election-Day max-literals=16
0.8496
0.6294
0.6699
0.6448
fake-news-datasets-Election-Day max-literals=32
0.8835
0.6677
0.6395
0.6516
fake-news-datasets-deception-FakeNewsAMT max-literals=3**
0.4062
0.4034
0.4049
0.4031
fake-news-datasets-deception-FakeNewsAMT max-literals=8**
0.4688
0.4651
0.4666
0.4617
fake-news-datasets-deception-FakeNewsAMT max-literals=16**
0.4062
0.4034
0.4049
0.4031
fake-news-datasets-deception-FakeNewsAMT max-literals=32**
0.4271
0.4215
0.4249
0.4195
fake-news-datasets-deception-Celebrity max-literals=3**
0.7300
0.7447
0.7178
0.7175
fake-news-datasets-deception-Celebrity max-literals=8**
0.7400
0.7397
0.7351
0.7362
fake-news-datasets-deception-Celebrity max-literals=16**
0.7200
0.7233
0.7118
0.7126
fake-news-datasets-deception-Celebrity max-literals=32**
0.7200
0.7208
0.7134
0.7144
** Overfitted (100% +- 2% accuracy on train data)