-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
182 lines (170 loc) · 6.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
## Utilities
try:
import comet_ml
has_comet = True
except (ImportError):
has_comet = False
import time
import os
import logging
import yaml
from timeit import default_timer as timer
## Libraries
import numpy as np
from box import box_from_file
from pathlib import Path
## Torch
import torch
import torch.nn as nn
from torch.utils import data
import torch.optim as optim
## Custom Imports
from utils.logger import setup_logs
from utils.seed import set_seed
from utils.train import train, snapshot
from utils.validation import validation
from utils.dataset import BookCorpus
from model.models import CPCv1
############ Control Center and Hyperparameter ###############
config = box_from_file(Path('config_cpc.yaml'), file_type='yaml')
if config.training.resume_name:
run_name = config.training.resume_name
else:
run_name = "cpc" + time.strftime("-%Y-%m-%d_%H_%M_%S")
# setup logger
global_timer = timer() # global timer
logger = setup_logs(config.training.logging_dir, run_name) # setup logs
logger.info('### Experiment {} ###'.format(run_name))
logger.info('### Hyperparameter summary below ###\n {}'.format(config))
# setup of comet_ml
if has_comet:
logger.info('### Logging with comet_ml ###')
if config.comet.previous_experiment:
logger.info('===> using existing experiment: {}'.format(config.comet.previous_experiment))
experiment = comet_ml.ExistingExperiment(api_key=config.comet.api_key,
previous_experiment=config.comet.previous_experiment)
else:
logger.info('===> starting new experiment')
experiment = comet_ml.Experiment(api_key=config.comet.api_key,
project_name="cpc-nlp")
experiment.set_name(run_name)
experiment.log_parameters({**config.training.to_dict() ,
**config.dataset.to_dict() ,
**config.cpc_model.to_dict()})
else:
experiment = None
# define if gpu or cpu
use_cuda = not config.training.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
logger.info('===> use_cuda is {}'.format(use_cuda))
# set seed for reproducibility
set_seed(config.training.seed, use_cuda)
# create a CPC model for NLP
model = CPCv1(config=config)
# load model if resume mode
if config.training.resume_name:
logger.info('===> loading a checkpoint')
checkpoint = torch.load('{}/{}-{}'.format(config.training.logging_dir, run_name,'model_best.pth'))
model.load_state_dict(checkpoint['state_dict'])
# line for multi-gpu
if config.training.multigpu and torch.cuda.device_count() > 1:
logger.info("===> let's use {} GPUs!".format(torch.cuda.device_count()))
model = nn.DataParallel(model)
# move to device
model.to(device)
## Loading the dataset
logger.info('===> loading train and validation dataset')
dataset = BookCorpus(config)
# split to train val
validation_split = 0.2 # 20% of dataset for validation
dataset_size = len(dataset)
if config.dataset.mini_dataset:
subset = 0.1 # 10% of dataset as minidataset
indices = list(range(int(dataset_size * subset)))
split = int(np.floor(validation_split * dataset_size * subset))
else:
indices = list(range(dataset_size))
split = int(np.floor(validation_split * dataset_size))
# get random indices (shuffle equivalent)
train_indices, valid_indices = indices[split:], indices[:split]
np.random.shuffle(train_indices)
# create dataloader
train_sampler = data.sampler.SubsetRandomSampler(train_indices)
validation_sampler = data.sampler.SubsetRandomSampler(valid_indices)
batch_size = int(config.training.batch_size*torch.cuda.device_count())
train_loader = data.DataLoader(dataset,
batch_size=batch_size,
sampler=train_sampler,
drop_last=True
)
validation_loader = data.DataLoader(dataset,
batch_size=batch_size,
sampler=validation_sampler,
drop_last=True
)
# Section 3.3: Adam optimizer with a learning rate of 2e-4
optimizer = optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=2e-4, betas=(0.9, 0.98), eps=1e-09, weight_decay=1e-4, amsgrad=True)
if config.training.resume_name:
optimizer.load_state_dict(checkpoint['optimizer'])
model_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info('### Model summary below ###\n {}'.format(str(model)))
logger.info('===> Model total parameter: {}\n'.format(model_params))
if has_comet: experiment.set_model_graph(str(model))
## Start training
if config.training.resume_name:
best_acc = checkpoint['validation_acc']
best_loss = checkpoint['validation_loss']
best_epoch = checkpoint['epoch']
step = checkpoint['step_train']
initial_epoch = checkpoint['epoch']
else:
best_acc = 0
best_loss = np.inf
best_epoch = -1
step = 0
initial_epoch = 1
logger.info('### Training begins at epoch {} and step {} ###'.format(initial_epoch,step))
for epoch in range(initial_epoch, config.training.epochs + 1):
epoch_timer = timer()
# Train and validate
_, _, step = train(
step,
experiment,
model,
train_loader,
device,
optimizer,
epoch,
config.cpc_model.k_size,
config.training.log_interval)
val_acc, val_loss = validation(
step,
experiment,
model,
validation_loader,
device,
config.cpc_model.k_size)
# Save
if val_acc > best_acc:
best_acc = max(val_acc, best_acc)
if torch.cuda.device_count() > 1:
dict_to_save = model.module.state_dict()
else:
dict_to_save = model.state_dict()
snapshot(config.training.logging_dir, run_name, {
'epoch': epoch,
'step_train': step,
'validation_acc': val_acc,
'validation_loss': val_loss,
'state_dict': dict_to_save,
'optimizer': optimizer.state_dict(),
})
best_epoch = epoch
end_epoch_timer = timer()
logger.info("#### End epoch {}/{}, elapsed time: {}".format(epoch, config.training.epochs, end_epoch_timer - epoch_timer))
## end
end_global_timer = timer()
logger.info("################## Success #########################")
logger.info("Total elapsed time: %s" % (end_global_timer - global_timer))