-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLM_RNN_GloVe.py
206 lines (155 loc) · 6.72 KB
/
LM_RNN_GloVe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from sklearn import preprocessing
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM, GRU
import wvlib
import random
from random import randint
import matplotlib.pyplot as plt
from scipy import spatial
import linecache
def add_unseen_token_2_extra_vocabulary(token, extra_vocab_filename):
print("Adding unseen token: ", token)
random_vector = [random.random() for _ in range(0, 300)]
string_vector = [str(i) for i in random_vector]
vector = [token.lower()] + [" "] + string_vector
with open(extra_vocab_filename, "a") as myfile:
str_vector = ' '.join(str(e) for e in vector) #covert list to string
str_vector = str_vector + "\n"
myfile.write(str_vector)
return random_vector
def tokenize_file_to_vectors(vectors_file, file2tokenize, outputfile):
with open(file2tokenize) as f:
for line in f:
tokens = line.split()
for token in tokens:
print("tokenizing: ",token)
token = my_strip(token)
vector = get_vector(token, vectors_file)
#vector = get_test_vector()
with open(outputfile, "a") as myfile:
str_vector = ','.join(str(e) for e in vector) #covert list to string
str_vector = str_vector + "\n"
myfile.write(str_vector)
def my_strip (token):
token = token.strip(",")
token = token.strip(".")
token = token.strip("?")
token = token.strip(":")
return token
def get_test_vector():
return list(range(10,15))
def get_vector(token, vectors_file, extra_vectors_file="/Users/macbook/Desktop/corpora/extra_vocab.txt"):
with open(extra_vectors_file) as f:
for line in f:
tokens = line.split()
if tokens[0] == token.lower():
vec = tokens[1:301]
print ("returning from extra: ", token)
return vec
with open(vectors_file) as f:
for line in f:
tokens = line.split()
if tokens[0] == token.lower():
vec = tokens[1:301]
return vec
vec = add_unseen_token_2_extra_vocabulary(token,extra_vectors_file)
return vec
def get_vector_by_number(token_number, vectors_filename="/Users/macbook/Desktop/corpora/glove.42B.300d.txt"):
line = linecache.getline(vectors_filename,token_number)
tokens = line.split()
vec = tokens[1:301]
return [float(i) for i in vec]
def load_data(train_file_name, window_size=10):
#train = pd.read_csv(train_file_name, header=None, delim_whitespace=True)
train = pd.read_csv(train_file_name)
docX, docY = [], []
for i in range(len(train)-window_size):
docX.append(train.iloc[i:i+window_size].as_matrix())
docY.append(train.iloc[i+window_size-1].as_matrix())
alsX = np.array(docX)
alsY = np.array(docY)
print("Shape x:", alsX.shape)
print("Shape y:", alsY.shape)
return alsX, alsY
def run_experiment(tokenized_by_vectors_filename):
X, Y = load_data(tokenized_by_vectors_filename)
in_out_neurons = 300
out_n = 300
hidden_neurons = 30
#create the model here
print("Creating model...")
model = Sequential()
print("Adding LSTM ...")
model.add(GRU(hidden_neurons, input_dim=in_out_neurons, return_sequences=False))
print("Adding dropout ...")
model.add(Dropout(0.8))
print("adding output layer...")
model.add(Dense(out_n, input_dim=hidden_neurons))
print("adding activation...")
model.add(Activation("linear"))
print("compiling...")
model.compile(loss="mean_squared_error", optimizer="rmsprop")
print("compiled!")
#split the data to train and test
data_size = X.shape[0]
train_size = int(data_size * 0.7)
X_train = X[0:train_size, :]
Y_train = Y[0:train_size]
Y_test = Y[train_size+1:data_size]
X_test = X[train_size+1:data_size, :]
print("start train!")
model.fit(X_train, Y_train, batch_size=100, nb_epoch=300, validation_split=0.05)
print ("model is fit!")
predicted_results = model.predict(X_test)
#print ("randome predicted shape: ", random_results.shape)
random_results = []
for i in range(1,predicted_results.shape[0]):
random_results.append(get_vector_by_number(randint(1,10000)))
calc_error_distribution(Y_test,predicted_results,random_results)
def calc_error_distribution(correct_values, predicted_values, random_values):
test_errors_file_name = "/Users/macbook/Desktop/corpora/test_errors.txt"
test_random_errors_file_name = "/Users/macbook/Desktop/corpora/test_random_errors.txt"
predicted_dist = []
random_dist = []
with open(test_errors_file_name, "a") as myfile:
for i in range(0,len(correct_values)-1):
distance = calc_distance(correct_values[i], predicted_values[i])
predicted_dist.append(distance)
# myfile.write(" " + str(distance))
with open(test_random_errors_file_name, "a") as myfile:
for i in range(0,len(correct_values)-1):
distance = calc_distance(correct_values[i], random_values[i])
random_dist.append(distance)
# myfile.write(" " + str(distance))
plt.hist(predicted_dist, fc=(0, 0, 1, 0.5), label="predicted")
plt.hist(random_dist, fc=(1, 0, 0, 0.5), label="random")
plt.legend(loc='upper right')
plt.show()
def calc_distance(vec1, vec2):
return spatial.distance.cosine(vec1, vec2)
def main():
file_2_tokenize_name = "/Users/macbook/Desktop/corpora/text2tokenize.txt"
file_2_tokenize_name_test = "/Users/macbook/Desktop/corpora/text2tokenize_test.txt"
tokenized_file_name = "/Users/macbook/Desktop/corpora/tokenized2vectors.txt"
glove_vectors_file_name = "/Users/macbook/Desktop/corpora/glove.42B.300d.txt"
vectors_test_file_name = "/Users/macbook/Desktop/corpora/vectors_test.txt"
extra_vocab_filename = "/Users/macbook/Desktop/corpora/extra_vocab.txt"
train_file_name = "/Users/macbook/Desktop/corpora/tokenized_train.txt"
test_errors_file_name = "/Users/macbook/Desktop/corpora/test_errors.txt"
test_random_errors_file_name = "/Users/macbook/Desktop/corpora/test_random_errors.txt"
tokenize_file_to_vectors(glove_vectors_file_name, file_2_tokenize_name, tokenized_file_name)
print("FINISHED TOKENIZING")
run_experiment(tokenized_file_name)
# X, Y = load_data(tokenized_file_name)
#print ("haha")
#wv = wvlib.load("/Users/macbook/Desktop/corpora/glove.42B.300d.txt")
#print("loaded")
#print("cat dog sim:", wv.similarity("dog", "cat"))
#print("nearest to dog", wv.nearest("dog"))
# run_experiment()
#load_data(train_file_name)
if __name__ == "__main__":
main()