-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
61 lines (55 loc) · 2.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import torch
import torch.nn as nn
from anp.model import DirDis, VisDirDis, ANP, LinearRegressionModel, EgoVisDis, EgoVisDisPool, Resnet101VisDirDis
from anp.trainer import TrainerCE, TrainerMSE
from arguments import get_config
config = get_config()
optimizer_class = torch.optim.AdamW
# TODO: replace with importlib from anp.model
if config['model']['classname'] == 'ANP':
model_class = ANP
elif config['model']['classname'] == 'VisDirDis':
model_class = VisDirDis
elif config['model']['classname'] == 'DirDis':
model_class = DirDis
elif config['model']['classname'] == 'LinearRegressionModel':
model_class = LinearRegressionModel
optimizer_class = torch.optim.SGD
elif config['model']['classname'] == 'EgoVisDis':
model_class = EgoVisDis
elif config['model']['classname'] == 'EgoVisDisPool':
model_class = EgoVisDisPool
elif config['model']['classname'] == 'Resnet101VisDirDis':
model_class = Resnet101VisDirDis
else:
print(f"Model {config['model']['classname']} not implemented.")
if config['model']['use_regression']:
criterion = nn.MSELoss()
if config.get('criterion', None) is not None:
if config['criterion']['classname'] == 'HuberLoss':
criterion = nn.HuberLoss(delta = config['criterion']['delta'])
trainer = TrainerMSE(config, model_class, optimizer_class=optimizer_class, criterion=criterion)
else:
criterion = nn.CrossEntropyLoss()
trainer = TrainerCE(config, model_class, optimizer_class=optimizer_class, criterion=criterion)
trainer.init_wandb()
trainer.init_training()
test_loss, test_acc = trainer.eval(trainer.test_loader, 'test')
train_loss, train_acc = trainer.eval(trainer.train_loader, 'train')
trainer.save_checkpoint(
os.path.join(config['chkpt_dir'], 'final-' + config['chkpt_path']),
epoch=trainer.epoch,
train_loss=train_loss,
test_loss=test_loss,
train_acc=train_acc,
test_acc=test_acc,
)
print(f'''Saving final model...
epoch={trainer.epoch},
train_loss={train_loss},
test_loss={test_loss},
train_acc={train_acc},
test_acc={test_acc}
'''
)