forked from NVlabs/NVAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_operations.py
320 lines (247 loc) · 10.9 KB
/
neural_operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# ---------------------------------------------------------------
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for NVAE. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from thirdparty.swish import Swish as SwishFN
from thirdparty.inplaced_sync_batchnorm import SyncBatchNormSwish
from utils import average_tensor
from collections import OrderedDict
BN_EPS = 1e-5
SYNC_BN = True
OPS = OrderedDict([
('res_elu', lambda Cin, Cout, stride: ELUConv(Cin, Cout, 3, stride, 1)),
('res_bnelu', lambda Cin, Cout, stride: BNELUConv(Cin, Cout, 3, stride, 1)),
('res_bnswish', lambda Cin, Cout, stride: BNSwishConv(Cin, Cout, 3, stride, 1)),
('res_bnswish5', lambda Cin, Cout, stride: BNSwishConv(Cin, Cout, 3, stride, 2, 2)),
('mconv_e6k5g0', lambda Cin, Cout, stride: InvertedResidual(Cin, Cout, stride, ex=6, dil=1, k=5, g=0)),
('mconv_e3k5g0', lambda Cin, Cout, stride: InvertedResidual(Cin, Cout, stride, ex=3, dil=1, k=5, g=0)),
('mconv_e3k5g8', lambda Cin, Cout, stride: InvertedResidual(Cin, Cout, stride, ex=3, dil=1, k=5, g=8)),
('mconv_e6k11g0', lambda Cin, Cout, stride: InvertedResidual(Cin, Cout, stride, ex=6, dil=1, k=11, g=0)),
])
def get_skip_connection(C, stride, affine, channel_mult):
if stride == 1:
return Identity()
elif stride == 2:
return FactorizedReduce(C, int(channel_mult * C))
elif stride == -1:
return nn.Sequential(UpSample(), Conv2D(C, int(C / channel_mult), kernel_size=1))
def norm(t, dim):
return torch.sqrt(torch.sum(t * t, dim))
def logit(t):
return torch.log(t) - torch.log(1 - t)
def act(t):
# The following implementation has lower memory.
return SwishFN.apply(t)
class Swish(nn.Module):
def __init__(self):
super(Swish, self).__init__()
def forward(self, x):
return act(x)
@torch.jit.script
def normalize_weight_jit(log_weight_norm, weight):
n = torch.exp(log_weight_norm)
wn = torch.sqrt(torch.sum(weight * weight, dim=[1, 2, 3])) # norm(w)
weight = n * weight / (wn.view(-1, 1, 1, 1) + 1e-5)
return weight
class Conv2D(nn.Conv2d):
"""Allows for weights as input."""
def __init__(self, C_in, C_out, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False, data_init=False,
weight_norm=True):
"""
Args:
use_shared (bool): Use weights for this layer or not?
"""
super(Conv2D, self).__init__(C_in, C_out, kernel_size, stride, padding, dilation, groups, bias)
self.log_weight_norm = None
if weight_norm:
init = norm(self.weight, dim=[1, 2, 3]).view(-1, 1, 1, 1)
self.log_weight_norm = nn.Parameter(torch.log(init + 1e-2), requires_grad=True)
self.data_init = data_init
self.init_done = False
self.weight_normalized = self.normalize_weight()
def forward(self, x):
"""
Args:
x (torch.Tensor): of size (B, C_in, H, W).
params (ConvParam): containing `weight` and `bias` (optional) of conv operation.
"""
# do data based initialization
if self.data_init and not self.init_done:
with torch.no_grad():
weight = self.weight / (norm(self.weight, dim=[1, 2, 3]).view(-1, 1, 1, 1) + 1e-5)
bias = None
out = F.conv2d(x, weight, bias, self.stride, self.padding, self.dilation, self.groups)
mn = torch.mean(out, dim=[0, 2, 3])
st = 5 * torch.std(out, dim=[0, 2, 3])
# get mn and st from other GPUs
average_tensor(mn, is_distributed=True)
average_tensor(st, is_distributed=True)
if self.bias is not None:
self.bias.data = - mn / (st + 1e-5)
self.log_weight_norm.data = -torch.log((st.view(-1, 1, 1, 1) + 1e-5))
self.init_done = True
self.weight_normalized = self.normalize_weight()
bias = self.bias
return F.conv2d(x, self.weight_normalized, bias, self.stride,
self.padding, self.dilation, self.groups)
def normalize_weight(self):
""" applies weight normalization """
if self.log_weight_norm is not None:
weight = normalize_weight_jit(self.log_weight_norm, self.weight)
else:
weight = self.weight
return weight
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
class SyncBatchNorm(nn.Module):
def __init__(self, *args, **kwargs):
super(SyncBatchNorm, self).__init__()
self.bn = nn.SyncBatchNorm(*args, **kwargs)
def forward(self, x):
# Sync BN only works with distributed data parallel with 1 GPU per process. I don't use DDP, so I need to let
# Sync BN to know that I have 1 gpu per process.
self.bn.ddp_gpu_size = 1
return self.bn(x)
# quick switch between multi-gpu, single-gpu batch norm
def get_batchnorm(*args, **kwargs):
if SYNC_BN:
return SyncBatchNorm(*args, **kwargs)
else:
return nn.BatchNorm2d(*args, **kwargs)
class ELUConv(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride=1, padding=0, dilation=1):
super(ELUConv, self).__init__()
self.upsample = stride == -1
stride = abs(stride)
self.conv_0 = Conv2D(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=True, dilation=dilation,
data_init=True)
def forward(self, x):
out = F.elu(x)
if self.upsample:
out = F.interpolate(out, scale_factor=2, mode='nearest')
out = self.conv_0(out)
return out
class BNELUConv(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride=1, padding=0, dilation=1):
super(BNELUConv, self).__init__()
self.upsample = stride == -1
stride = abs(stride)
self.bn = get_batchnorm(C_in, eps=BN_EPS, momentum=0.05)
self.conv_0 = Conv2D(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=True, dilation=dilation)
def forward(self, x):
x = self.bn(x)
out = F.elu(x)
if self.upsample:
out = F.interpolate(out, scale_factor=2, mode='nearest')
out = self.conv_0(out)
return out
class BNSwishConv(nn.Module):
"""ReLU + Conv2d + BN."""
def __init__(self, C_in, C_out, kernel_size, stride=1, padding=0, dilation=1):
super(BNSwishConv, self).__init__()
self.upsample = stride == -1
stride = abs(stride)
self.bn_act = SyncBatchNormSwish(C_in, eps=BN_EPS, momentum=0.05)
self.conv_0 = Conv2D(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=True, dilation=dilation)
def forward(self, x):
"""
Args:
x (torch.Tensor): of size (B, C_in, H, W)
"""
out = self.bn_act(x)
if self.upsample:
out = F.interpolate(out, scale_factor=2, mode='nearest')
out = self.conv_0(out)
return out
class FactorizedReduce(nn.Module):
def __init__(self, C_in, C_out):
super(FactorizedReduce, self).__init__()
assert C_out % 2 == 0
self.conv_1 = Conv2D(C_in, C_out // 4, 1, stride=2, padding=0, bias=True)
self.conv_2 = Conv2D(C_in, C_out // 4, 1, stride=2, padding=0, bias=True)
self.conv_3 = Conv2D(C_in, C_out // 4, 1, stride=2, padding=0, bias=True)
self.conv_4 = Conv2D(C_in, C_out - 3 * (C_out // 4), 1, stride=2, padding=0, bias=True)
def forward(self, x):
out = act(x)
conv1 = self.conv_1(out)
conv2 = self.conv_2(out[:, :, 1:, 1:])
conv3 = self.conv_3(out[:, :, :, 1:])
conv4 = self.conv_4(out[:, :, 1:, :])
out = torch.cat([conv1, conv2, conv3, conv4], dim=1)
return out
class UpSample(nn.Module):
def __init__(self):
super(UpSample, self).__init__()
pass
def forward(self, x):
return F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
class EncCombinerCell(nn.Module):
def __init__(self, Cin1, Cin2, Cout, cell_type):
super(EncCombinerCell, self).__init__()
self.cell_type = cell_type
# Cin = Cin1 + Cin2
self.conv = Conv2D(Cin2, Cout, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, x1, x2):
x2 = self.conv(x2)
out = x1 + x2
return out
# original combiner
class DecCombinerCell(nn.Module):
def __init__(self, Cin1, Cin2, Cout, cell_type):
super(DecCombinerCell, self).__init__()
self.cell_type = cell_type
self.conv = Conv2D(Cin1 + Cin2, Cout, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, x1, x2):
out = torch.cat([x1, x2], dim=1)
out = self.conv(out)
return out
class ConvBNSwish(nn.Module):
def __init__(self, Cin, Cout, k=3, stride=1, groups=1, dilation=1):
padding = dilation * (k - 1) // 2
super(ConvBNSwish, self).__init__()
self.conv = nn.Sequential(
Conv2D(Cin, Cout, k, stride, padding, groups=groups, bias=False, dilation=dilation, weight_norm=False),
SyncBatchNormSwish(Cout, eps=BN_EPS, momentum=0.05) # drop in replacement for BN + Swish
)
def forward(self, x):
return self.conv(x)
class SE(nn.Module):
def __init__(self, Cin, Cout):
super(SE, self).__init__()
num_hidden = max(Cout // 16, 4)
self.se = nn.Sequential(nn.Linear(Cin, num_hidden), nn.ReLU(inplace=True),
nn.Linear(num_hidden, Cout), nn.Sigmoid())
def forward(self, x):
se = torch.mean(x, dim=[2, 3])
se = se.view(se.size(0), -1)
se = self.se(se)
se = se.view(se.size(0), -1, 1, 1)
return x * se
class InvertedResidual(nn.Module):
def __init__(self, Cin, Cout, stride, ex, dil, k, g):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2, -1]
hidden_dim = int(round(Cin * ex))
self.use_res_connect = self.stride == 1 and Cin == Cout
self.upsample = self.stride == -1
self.stride = abs(self.stride)
groups = hidden_dim if g == 0 else g
layers0 = [nn.UpsamplingNearest2d(scale_factor=2)] if self.upsample else []
layers = [get_batchnorm(Cin, eps=BN_EPS, momentum=0.05),
ConvBNSwish(Cin, hidden_dim, k=1),
ConvBNSwish(hidden_dim, hidden_dim, stride=self.stride, groups=groups, k=k, dilation=dil),
Conv2D(hidden_dim, Cout, 1, 1, 0, bias=False, weight_norm=False),
get_batchnorm(Cout, momentum=0.05)]
layers0.extend(layers)
self.conv = nn.Sequential(*layers0)
def forward(self, x):
return self.conv(x)