-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmodel.py
226 lines (183 loc) · 8.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import math
import torch
import torch.nn as nn
import numpy as np
from utils.diffusion_util import diff_CSDI
class ModelMain(nn.Module):
def __init__(self, config, device, target_dim=96):
super().__init__()
self.device = device
self.target_dim = target_dim
self.emb_time_dim = config["model"]["timeemb"]
self.emb_feature_dim = config["model"]["featureemb"]
self.is_unconditional = config["model"]["is_unconditional"]
self.emb_total_dim = self.emb_time_dim + self.emb_feature_dim
if not self.is_unconditional:
self.emb_total_dim += 1 # for conditional mask
self.embed_layer = nn.Embedding(
num_embeddings=self.target_dim, embedding_dim=self.emb_feature_dim
)
config_diff = config["diffusion"]
config_diff["side_dim"] = self.emb_total_dim
input_dim = 1 if self.is_unconditional else 2
self.diffmodel = diff_CSDI(config_diff, input_dim)
# parameters for diffusion models
self.num_steps = config_diff["num_steps"]
if config_diff["schedule"] == "quad":
self.beta = np.linspace(
config_diff["beta_start"] ** 0.5, config_diff["beta_end"] ** 0.5, self.num_steps
) ** 2
elif config_diff["schedule"] == "linear":
self.beta = np.linspace(
config_diff["beta_start"], config_diff["beta_end"], self.num_steps
)
elif config_diff["schedule"] == "cosine":
self.beta = self.betas_for_alpha_bar(
self.num_steps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
)
self.alpha_hat = 1 - self.beta
self.alpha = np.cumprod(self.alpha_hat)
self.alpha_torch = torch.tensor(self.alpha).float().to(self.device).unsqueeze(1).unsqueeze(1)
def betas_for_alpha_bar(self, num_diffusion_timesteps, alpha_bar, max_beta=0.5):
# """
# Create a beta schedule that discretizes the given alpha_t_bar function,
# which defines the cumulative product of (1-beta) over time from t = [0,1].
# :param num_diffusion_timesteps: the number of betas to produce.
# :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
# produces the cumulative product of (1-beta) up to that
# part of the diffusion process.
# :param max_beta: the maximum beta to use; use values lower than 1 to
# prevent singularities.
# """
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas)
def time_embedding(self, pos, d_model=128):
pe = torch.zeros(pos.shape[0], pos.shape[1], d_model).to(self.device)
position = pos.unsqueeze(2)
div_term = 1 / torch.pow(
10000.0, torch.arange(0, d_model, 2).to(self.device) / d_model
)
pe[:, :, 0::2] = torch.sin(position * div_term)
pe[:, :, 1::2] = torch.cos(position * div_term)
return pe
def get_side_info(self, observed_tp, cond_mask):
B, K, L = cond_mask.shape
time_embed = self.time_embedding(observed_tp, self.emb_time_dim) # (B,L,emb)
time_embed = time_embed.unsqueeze(2).expand(-1, -1, K, -1)
feature_embed = self.embed_layer(
torch.arange(self.target_dim).to(self.device)
) # (K,emb)
feature_embed = feature_embed.unsqueeze(0).unsqueeze(0).expand(B, L, -1, -1)
side_info = torch.cat([time_embed, feature_embed], dim=-1) # (B,L,K,*)
side_info = side_info.permute(0, 3, 2, 1) # (B,*,K,L)
if not self.is_unconditional:
side_mask = cond_mask.unsqueeze(1) # (B,1,K,L)
side_info = torch.cat([side_info, side_mask], dim=1)
return side_info
def calc_loss_valid(
self, observed_data, cond_mask, side_info, is_train
):
loss_sum = 0
for t in range(self.num_steps): # calculate loss for all t
loss = self.calc_loss(
observed_data, cond_mask, side_info, is_train, set_t=t
)
loss_sum += loss.detach()
return loss_sum / self.num_steps
def calc_loss(
self, observed_data, cond_mask, side_info, is_train, set_t=-1
):
B, K, L = observed_data.shape
if is_train != 1: # for validation
t = (torch.ones(B) * set_t).long().to(self.device)
else:
t = torch.randint(0, self.num_steps, [B]).to(self.device)
current_alpha = self.alpha_torch[t].to(self.device) # (B,1,1)
noise = torch.randn_like(observed_data).to(self.device)
noisy_data = (current_alpha ** 0.5) * observed_data + (1.0 - current_alpha) ** 0.5 * noise
total_input = self.set_input_to_diffmodel(noisy_data, observed_data, cond_mask)
predicted = self.diffmodel(total_input, side_info, t) # (B,K,L)
target_mask = 1 - cond_mask
residual = (noise - predicted) * target_mask
num_eval = target_mask.sum()
loss = (residual ** 2).sum() / (num_eval if num_eval > 0 else 1)
return loss
def set_input_to_diffmodel(self, noisy_data, observed_data, cond_mask):
if self.is_unconditional:
total_input = noisy_data.unsqueeze(1) # (B,1,K,L)
else:
cond_obs = (cond_mask * observed_data).unsqueeze(1)
noisy_target = ((1 - cond_mask) * noisy_data).unsqueeze(1)
total_input = torch.cat([cond_obs, noisy_target], dim=1) # (B,2,K,L)
return total_input
def impute(self, observed_data, cond_mask, side_info, n_samples):
B, K, L = observed_data.shape
imputed_samples = torch.zeros(B, n_samples, K, L).to(self.device)
for i in range(n_samples):
# generate noisy observation for unconditional model
if self.is_unconditional:
noisy_obs = observed_data
noisy_cond_history = []
for t in range(self.num_steps):
noise = torch.randn_like(noisy_obs)
noisy_obs = (self.alpha_hat[t] ** 0.5) * noisy_obs + self.beta[t] ** 0.5 * noise
noisy_cond_history.append(noisy_obs * cond_mask)
current_sample = torch.randn_like(observed_data)
for t in range(self.num_steps - 1, -1, -1):
if self.is_unconditional:
diff_input = cond_mask * noisy_cond_history[t] + (1.0 - cond_mask) * current_sample
diff_input = diff_input.unsqueeze(1) # (B,1,K,L)
else:
cond_obs = (cond_mask * observed_data).unsqueeze(1)
noisy_target = ((1 - cond_mask) * current_sample).unsqueeze(1)
diff_input = torch.cat([cond_obs, noisy_target], dim=1) # (B,2,K,L)
predicted = self.diffmodel(diff_input, side_info, torch.tensor([t]).to(self.device))
coeff1 = 1 / self.alpha_hat[t] ** 0.5
coeff2 = (1 - self.alpha_hat[t]) / (1 - self.alpha[t]) ** 0.5
current_sample = coeff1 * (current_sample - coeff2 * predicted)
if t > 0:
noise = torch.randn_like(current_sample)
sigma = (
(1.0 - self.alpha[t - 1]) / (1.0 - self.alpha[t]) * self.beta[t]
) ** 0.5
current_sample += sigma * noise
imputed_samples[:, i] = (current_sample * (1 - cond_mask) + observed_data * cond_mask).detach()
return imputed_samples
def forward(self, batch, is_train=1):
(
observed_data,
observed_tp,
gt_mask
) = self.process_data(batch)
cond_mask = gt_mask
side_info = self.get_side_info(observed_tp, cond_mask)
loss_func = self.calc_loss if is_train == 1 else self.calc_loss_valid
return loss_func(observed_data, cond_mask, side_info, is_train)
def evaluate(self, batch, n_samples):
(
observed_data,
observed_tp,
gt_mask
) = self.process_data(batch)
with torch.no_grad():
cond_mask = gt_mask
target_mask = 1 - cond_mask
side_info = self.get_side_info(observed_tp, cond_mask)
samples = self.impute(observed_data, cond_mask, side_info, n_samples)
return samples, observed_data, target_mask, observed_tp
def process_data(self, batch):
pose = batch["pose"].to(self.device).float()
tp = batch["timepoints"].to(self.device).float()
mask = batch["mask"].to(self.device).float()
pose = pose.permute(0, 2, 1)
mask = mask.permute(0, 2, 1)
return (
pose,
tp,
mask
)