-
Notifications
You must be signed in to change notification settings - Fork 0
/
faceRecognition.py
53 lines (43 loc) · 1.73 KB
/
faceRecognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
def faceDetection(test_img):
gray_img = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY)
face_haar_cascade = cv2.CascadeClassifier('C:/Users/vivek/Desktop/Face_recognition/haar_cascade/haarcascade_frontalface_default.xml')
faces = face_haar_cascade.detectMultiScale(gray_img, scaleFactor=1.1, minNeighbors=3)
return faces, gray_img
def labels_for_training_data(directory):
faces = []
faceID = []
for path, subdirnames, filenames in os.walk(directory):
for filename in filenames:
if filename.startswith('.'):
print('skipping system file')
continue
id = os.path.basename(path)
img_path = os.path.join(path, filename)
print('img path: ', img_path)
print('id: ', id)
test_img = cv2.imread(img_path)
if test_img is None:
print('image not loaded properly')
continue
faces_rect, gray_img = faceDetection(test_img)
if len(faces_rect) != 1 :
continue
x,y,w,h = faces_rect[0]
roi_gray = gray_img[y:y+w, x:x+h]
faces.append(roi_gray)
faceID.append(int(id))
return faces, faceID
def train_classifier(faces, faceID):
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
face_recognizer.train(faces, np.array(faceID))
return face_recognizer
def draw_rect(test_img, face):
x,y,w,h = face
cv2.rectangle(test_img,(x,y),(x+w, y+h), (255,0,0), 2)
def put_text(test_img, text, x,y):
cv2.putText(test_img, text, (x,y), cv2.FONT_HERSHEY_DUPLEX, 1, (255,0,0), thickness=1)