-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLang.thy
297 lines (246 loc) · 15.5 KB
/
Lang.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
theory Lang
imports SepAlgInstances
begin
section \<open> Language Definition \<close>
subsection \<open> Commands \<close>
datatype 'a comm =
Skip
| Seq \<open>'a comm\<close> \<open>'a comm\<close> (infixr \<open>;;\<close> 75)
| Par \<open>'a comm\<close> \<open>'a comm\<close> (infixr \<open>\<parallel>\<close> 65)
| Indet \<open>'a comm\<close> \<open>'a comm\<close> (infixr \<open>\<^bold>+\<close> 65)
| Endet \<open>'a comm\<close> \<open>'a comm\<close> (infixr \<open>\<box>\<close> 65)
| Atomic \<open>'a \<Rightarrow> 'a \<Rightarrow> bool\<close> (\<open>\<langle> _ \<rangle>\<close> [0] 999)
| Iter \<open>'a comm\<close> (\<open>DO (_) OD\<close> [0] 999)
\<comment> \<open> loops are represented by (least) fixed points. Fixed point variables are done in de Brijn
style. \<close>
| Fix \<open>'a comm\<close> (\<open>\<mu>\<close>)
| FixVar nat
subsection \<open> substitution \<close>
primrec map_fixvar :: \<open>(nat \<Rightarrow> nat) \<Rightarrow> 'a comm \<Rightarrow> 'a comm\<close> where
\<open>map_fixvar f Skip = Skip\<close>
| \<open>map_fixvar f (c1 ;; c2) = map_fixvar f c1 ;; map_fixvar f c2\<close>
| \<open>map_fixvar f (c1 \<parallel> c2) = map_fixvar f c1 \<parallel> map_fixvar f c2\<close>
| \<open>map_fixvar f (c1 \<^bold>+ c2) = map_fixvar f c1 \<^bold>+ map_fixvar f c2\<close>
| \<open>map_fixvar f (c1 \<box> c2) = map_fixvar f c1 \<box> map_fixvar f c2\<close>
| \<open>map_fixvar f (DO c OD) = DO (map_fixvar f c) OD\<close>
| \<open>map_fixvar f (\<mu> c) = \<mu> (map_fixvar (case_nat 0 (Suc \<circ> f)) c)\<close>
| \<open>map_fixvar f (FixVar x) = FixVar (f x)\<close>
| \<open>map_fixvar f (Atomic b) = Atomic b\<close>
lemma map_fixvar_size[simp]:
\<open>size (map_fixvar f c) = size c\<close>
by (induct c arbitrary: f) force+
lemma map_fixvar_comp:
\<open>map_fixvar f (map_fixvar g c) = map_fixvar (f \<circ> g) c\<close>
by (induct c arbitrary: f g)
(force intro: arg_cong2[where f=map_fixvar, OF _ refl] simp add: comp_def split: nat.splits)+
lemma map_fixvar_rev_iff:
\<open>map_fixvar f c = c1' ;; c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 ;; c2 \<and> c1' = map_fixvar f c1 \<and> c2' = map_fixvar f c2)\<close>
\<open>map_fixvar f c = c1' \<parallel> c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 \<parallel> c2 \<and> c1' = map_fixvar f c1 \<and> c2' = map_fixvar f c2)\<close>
\<open>map_fixvar f c = c1' \<^bold>+ c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 \<^bold>+ c2 \<and> c1' = map_fixvar f c1 \<and> c2' = map_fixvar f c2)\<close>
\<open>map_fixvar f c = c1' \<box> c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 \<box> c2 \<and> c1' = map_fixvar f c1 \<and> c2' = map_fixvar f c2)\<close>
\<open>map_fixvar f c = DO c' OD \<longleftrightarrow>
(\<exists>ca. c = DO ca OD \<and> c' = map_fixvar f ca)\<close>
\<open>map_fixvar f c = \<mu> c' \<longleftrightarrow>
(\<exists>ca. c = \<mu> ca \<and> c' = map_fixvar (case_nat 0 (Suc \<circ> f)) ca)\<close>
\<open>map_fixvar f c = Skip \<longleftrightarrow> c = Skip\<close>
\<open>map_fixvar f c = FixVar y \<longleftrightarrow> (\<exists>x. c = FixVar x \<and> f x = y)\<close>
\<open>map_fixvar f c = Atomic b \<longleftrightarrow> c = Atomic b\<close>
apply ((induct c; simp), metis)
apply ((induct c; simp), metis)
apply ((induct c; simp), metis)
apply ((induct c; simp), metis)
apply ((induct c; simp), metis)
apply ((induct c; simp), blast)
apply (induct c; simp; fail)+
done
lemmas map_fixvar_sym_rev_iff = map_fixvar_rev_iff[THEN trans[OF eq_commute]]
lemma map_fixvar_inj_inject:
\<open>inj f \<Longrightarrow> (map_fixvar f c1 = map_fixvar f c2) = (c1 = c2)\<close>
proof (induct c1 arbitrary: c2 f)
case (Fix c1)
moreover have \<open>inj (case_nat 0 (Suc \<circ> f))\<close>
using Fix.prems
apply (clarsimp simp add: inj_def)
apply (case_tac x; case_tac y; simp)
done
ultimately show ?case
by (force simp add: map_fixvar_sym_rev_iff)
next
case (FixVar x)
then show ?case
by (metis injD map_fixvar_rev_iff(8))
qed (force simp add: map_fixvar_sym_rev_iff)+
primrec fixvar_subst :: \<open>'a comm \<Rightarrow> nat \<Rightarrow> 'a comm \<Rightarrow> 'a comm\<close> (\<open>_[_ \<leftarrow> _]\<close> [1000, 0, 0] 1000) where
\<open>Skip[_ \<leftarrow> _] = Skip\<close>
| \<open>(c1 ;; c2)[x \<leftarrow> c'] = (c1[x \<leftarrow> c'] ;; c2[x \<leftarrow> c'])\<close>
| \<open>(c1 \<parallel> c2)[x \<leftarrow> c'] = (c1[x \<leftarrow> c'] \<parallel> c2[x \<leftarrow> c'])\<close>
| \<open>(c1 \<^bold>+ c2)[x \<leftarrow> c'] = (c1[x \<leftarrow> c'] \<^bold>+ c2[x \<leftarrow> c'])\<close>
| \<open>(c1 \<box> c2)[x \<leftarrow> c'] = (c1[x \<leftarrow> c'] \<box> c2[x \<leftarrow> c'])\<close>
| \<open>(DO c OD)[x \<leftarrow> c'] = (DO c[x \<leftarrow> c'] OD)\<close>
| \<open>(\<mu> c)[x \<leftarrow> c'] = \<mu> (c[Suc x \<leftarrow> c'])\<close>
| \<open>(FixVar y)[x \<leftarrow> c'] = (if x = y then c' else FixVar y)\<close>
| \<open>(Atomic b)[_ \<leftarrow> _] = Atomic b\<close>
lemma fixvar_subst_rev_iff:
\<open>c[x \<leftarrow> cx] = Skip \<longleftrightarrow> c = Skip \<or> c = FixVar x \<and> cx = Skip\<close>
\<open>c[x \<leftarrow> cx] = c1' ;; c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 ;; c2 \<and> c1' = c1[x \<leftarrow> cx] \<and> c2' = c2[x \<leftarrow> cx]) \<or>
c = FixVar x \<and> cx = c1' ;; c2'\<close>
\<open>c[x \<leftarrow> cx] = c1' \<parallel> c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 \<parallel> c2 \<and> c1' = c1[x \<leftarrow> cx] \<and> c2' = c2[x \<leftarrow> cx]) \<or>
c = FixVar x \<and> cx = c1' \<parallel> c2'\<close>
\<open>c[x \<leftarrow> cx] = c1' \<^bold>+ c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 \<^bold>+ c2 \<and> c1' = c1[x \<leftarrow> cx] \<and> c2' = c2[x \<leftarrow> cx]) \<or>
c = FixVar x \<and> cx = c1' \<^bold>+ c2'\<close>
\<open>c[x \<leftarrow> cx] = c1' \<box> c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 \<box> c2 \<and> c1' = c1[x \<leftarrow> cx] \<and> c2' = c2[x \<leftarrow> cx]) \<or>
c = FixVar x \<and> cx = c1' \<box> c2'\<close>
\<open>c[x \<leftarrow> cx] = DO c' OD \<longleftrightarrow>
(\<exists>ca. c = DO ca OD \<and> c' = ca[x \<leftarrow> cx]) \<or>
c = FixVar x \<and> cx = DO c' OD\<close>
\<open>c[x \<leftarrow> cx] = \<mu> c' \<longleftrightarrow>
(\<exists>ca. c = \<mu> ca \<and> c' = ca[Suc x \<leftarrow> cx]) \<or>
c = FixVar x \<and> cx = \<mu> c'\<close>
\<open>c[x \<leftarrow> cx] = FixVar y \<longleftrightarrow> c = FixVar x \<and> cx = FixVar y \<or> x \<noteq> y \<and> c = FixVar y\<close>
\<open>c[x \<leftarrow> cx] = Atomic b \<longleftrightarrow> c = Atomic b \<or> c = FixVar x \<and> cx = Atomic b\<close>
apply (induct c; simp; fail)
apply ((induct c; simp), metis)+
apply (induct c; simp; fail)
done
lemma fixvar_subst_over_map_avoid:
\<open>\<forall>y. f y \<noteq> x \<Longrightarrow> (map_fixvar f c)[x \<leftarrow> cx] = map_fixvar f c\<close>
apply (induct c arbitrary: x f)
apply (simp; fail)+
apply (drule_tac x=\<open>Suc x\<close> in meta_spec, drule_tac x=\<open>case_nat 0 (Suc \<circ> f)\<close> in meta_spec,
clarsimp split: nat.splits)
apply force
done
subsection \<open> Map atoms \<close>
fun map_comm :: \<open>('b \<Rightarrow> 'a) \<Rightarrow> 'a comm \<Rightarrow> 'b comm\<close> where
\<open>map_comm f Skip = Skip\<close>
| \<open>map_comm f (a ;; b) = map_comm f a ;; map_comm f b\<close>
| \<open>map_comm f (a \<parallel> b) = map_comm f a \<parallel> map_comm f b\<close>
| \<open>map_comm f (a \<^bold>+ b) = map_comm f a \<^bold>+ map_comm f b\<close>
| \<open>map_comm f (a \<box> b) = map_comm f a \<box> map_comm f b\<close>
| \<open>map_comm f (Atomic b) = Atomic (\<lambda>x y. b (f x) (f y))\<close>
| \<open>map_comm f (DO a OD) = DO map_comm f a OD\<close>
| \<open>map_comm f (\<mu> c) = \<mu> (map_comm f c)\<close>
| \<open>map_comm f (FixVar x) = FixVar x\<close>
lemma map_comm_rev_iff:
\<open>map_comm f c = Skip \<longleftrightarrow> c = Skip\<close>
\<open>map_comm f c = c1' ;; c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 ;; c2 \<and> c1' = map_comm f c1 \<and> c2' = map_comm f c2)\<close>
\<open>map_comm f c = c1' \<parallel> c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 \<parallel> c2 \<and> c1' = map_comm f c1 \<and> c2' = map_comm f c2)\<close>
\<open>map_comm f c = c1' \<^bold>+ c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 \<^bold>+ c2 \<and> c1' = map_comm f c1 \<and> c2' = map_comm f c2)\<close>
\<open>map_comm f c = c1' \<box> c2' \<longleftrightarrow>
(\<exists>c1 c2. c = c1 \<box> c2 \<and> c1' = map_comm f c1 \<and> c2' = map_comm f c2)\<close>
\<open>map_comm f c = DO c' OD \<longleftrightarrow>
(\<exists>ca. c = DO ca OD \<and> c' = map_comm f ca)\<close>
\<open>map_comm f c = \<mu> c' \<longleftrightarrow>
(\<exists>ca. c = \<mu> ca \<and> c' = map_comm f ca)\<close>
\<open>map_comm f c = FixVar x \<longleftrightarrow> c = FixVar x\<close>
\<open>map_comm f c = Atomic b \<longleftrightarrow> (\<exists>b'. c = Atomic b' \<and> b = (\<lambda>x y. b' (f x) (f y)))\<close>
by (induct c; simp; argo)+
lemmas map_comm_rev_iff2 = map_comm_rev_iff[THEN trans[OF eq_commute]]
subsection \<open> All atom commands predicate \<close>
text \<open> Predicate to ensure atomic actions have a given property \<close>
inductive all_atom_comm :: \<open>(('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool) \<Rightarrow> 'a comm \<Rightarrow> bool\<close> where
skip[iff]: \<open>all_atom_comm p Skip\<close>
| seq[intro!]: \<open>all_atom_comm p c1 \<Longrightarrow> all_atom_comm p c2 \<Longrightarrow> all_atom_comm p (c1 ;; c2)\<close>
| par[intro!]: \<open>all_atom_comm p c1 \<Longrightarrow> all_atom_comm p c2 \<Longrightarrow> all_atom_comm p (c1 \<parallel> c2)\<close>
| indet[intro!]: \<open>all_atom_comm p c1 \<Longrightarrow> all_atom_comm p c2 \<Longrightarrow> all_atom_comm p (c1 \<^bold>+ c2)\<close>
| endet[intro!]: \<open>all_atom_comm p c1 \<Longrightarrow> all_atom_comm p c2 \<Longrightarrow> all_atom_comm p (c1 \<box> c2)\<close>
| iter[intro!]: \<open>all_atom_comm p c \<Longrightarrow> all_atom_comm p (DO c OD)\<close>
| fixpt[intro!]: \<open>all_atom_comm p c \<Longrightarrow> all_atom_comm p (\<mu> c)\<close>
| fixvar[iff]: \<open>all_atom_comm p (FixVar x)\<close>
| atom[intro!]: \<open>p b \<Longrightarrow> all_atom_comm p (Atomic b)\<close>
inductive_cases all_atom_comm_seqE[elim!]: \<open>all_atom_comm p (c1 ;; c2)\<close>
inductive_cases all_atom_comm_indetE[elim!]: \<open>all_atom_comm p (c1 \<^bold>+ c2)\<close>
inductive_cases all_atom_comm_endetE[elim!]: \<open>all_atom_comm p (c1 \<box> c2)\<close>
inductive_cases all_atom_comm_parE[elim!]: \<open>all_atom_comm p (c1 \<parallel> c2)\<close>
inductive_cases all_atom_comm_iterE[elim!]: \<open>all_atom_comm p (DO c OD)\<close>
inductive_cases all_atom_comm_fixptE[elim!]: \<open>all_atom_comm p (\<mu> c)\<close>
inductive_cases all_atom_comm_fixvarE[elim!]: \<open>all_atom_comm p (FixVar x)\<close>
inductive_cases all_atom_comm_atomE[elim!]: \<open>all_atom_comm p (Atomic b)\<close>
lemma all_atom_comm_simps[simp]:
\<open>all_atom_comm p (c1 ;; c2) \<longleftrightarrow> all_atom_comm p c1 \<and> all_atom_comm p c2\<close>
\<open>all_atom_comm p (c1 \<^bold>+ c2) \<longleftrightarrow> all_atom_comm p c1 \<and> all_atom_comm p c2\<close>
\<open>all_atom_comm p (c1 \<box> c2) \<longleftrightarrow> all_atom_comm p c1 \<and> all_atom_comm p c2\<close>
\<open>all_atom_comm p (c1 \<parallel> c2) \<longleftrightarrow> all_atom_comm p c1 \<and> all_atom_comm p c2\<close>
\<open>all_atom_comm p (DO c OD) \<longleftrightarrow> all_atom_comm p c\<close>
\<open>all_atom_comm p (\<mu> c) \<longleftrightarrow> all_atom_comm p c\<close>
\<open>all_atom_comm p (Atomic b) \<longleftrightarrow> p b\<close>
by fastforce+
lemma all_atom_comm_pred_mono:
\<open>p \<le> q \<Longrightarrow> all_atom_comm p c \<Longrightarrow> all_atom_comm q c\<close>
by (induct c) force+
lemma all_atom_comm_pred_mono':
\<open>p \<le> q \<Longrightarrow> all_atom_comm p \<le> all_atom_comm q\<close>
using all_atom_comm_pred_mono by auto
lemmas all_atom_comm_pred_monoD = all_atom_comm_pred_mono[rotated]
lemma all_atom_comm_conj_eq:
\<open>all_atom_comm (p \<sqinter> q) c \<longleftrightarrow> all_atom_comm p c \<and> all_atom_comm q c\<close>
by (induct c) force+
lemma all_atom_comm_pconj_eq[simp]:
\<open>all_atom_comm (\<lambda>x. p x \<and> q x) c \<longleftrightarrow> all_atom_comm p c \<and> all_atom_comm q c\<close>
by (induct c) force+
lemma all_atom_comm_top_eq[simp]:
\<open>all_atom_comm \<top> c\<close>
by (induct c) force+
lemma all_atom_comm_pTrue_eq[simp]:
\<open>all_atom_comm (\<lambda>x. True) c\<close>
by (induct c) force+
lemma all_atom_comm_subst[simp]:
\<open>all_atom_comm p c' \<Longrightarrow> all_atom_comm p (c[x \<leftarrow> c']) \<longleftrightarrow> all_atom_comm p c\<close>
by (induct c arbitrary: x) force+
lemma all_atom_comm_subst_strong:
\<open>all_atom_comm p c' - all_atom_comm p c \<Longrightarrow> all_atom_comm p (c[x \<leftarrow> c']) \<longleftrightarrow> all_atom_comm p c\<close>
by (induct c arbitrary: x) force+
abbreviation \<open>atoms_subrel_of r \<equiv> all_atom_comm (\<lambda>b. b \<le> r)\<close>
section \<open> Specific Languages \<close>
subsection \<open> Sugared atomic programs \<close>
definition \<open>pguard p \<equiv> \<lambda>a b. p a \<and> a = b\<close>
abbreviation \<open>Guard p \<equiv> Atomic (pguard p)\<close>
lemmas Guard_def = arg_cong[where f=Atomic, OF meta_eq_to_obj_eq[OF pguard_def]]
lemma pguard_simps[simp]:
\<open>pguard p a b \<longleftrightarrow> p a \<and> b = a\<close>
by (force simp add: pguard_def)
subsection \<open> If-then-else and While Loops \<close>
definition \<open>IfThenElse p ct cf \<equiv> Guard p ;; ct \<box> Guard (-p) ;; cf\<close>
definition \<open>WhileLoop p c \<equiv> DO (Guard p ;; c \<box> Guard (-p)) OD\<close>
lemma IfThenElse_inject[simp]:
\<open>IfThenElse p1 ct1 cf1 = IfThenElse p2 ct2 cf2 \<longleftrightarrow> p1 = p2 \<and> ct1 = ct2 \<and> cf1 = cf2\<close>
by (simp add: IfThenElse_def pguard_def fun_eq_iff, blast)
lemma WhileLoop_inject[simp]:
\<open>WhileLoop p1 c1 = WhileLoop p2 c2 \<longleftrightarrow> p1 = p2 \<and> c1 = c2\<close>
by (simp add: WhileLoop_def map_fixvar_inj_inject pguard_def fun_eq_iff, blast)
lemma IfThenElse_distinct[simp]:
\<open>IfThenElse p ct cf \<noteq> Skip\<close>
\<open>IfThenElse p ct cf \<noteq> c1 ;; c2\<close>
\<open>IfThenElse p ct cf \<noteq> c1 \<parallel> c2\<close>
\<open>IfThenElse p ct cf \<noteq> \<mu> c\<close>
\<open>IfThenElse p ct cf \<noteq> Atomic b\<close>
\<open>Skip \<noteq> IfThenElse p ct cf\<close>
\<open>c1 ;; c2 \<noteq> IfThenElse p ct cf\<close>
\<open>c1 \<parallel> c2 \<noteq> IfThenElse p ct cf\<close>
\<open>\<mu> c \<noteq> IfThenElse p ct cf\<close>
\<open>Atomic b \<noteq> IfThenElse p ct cf\<close>
by (simp add: IfThenElse_def)+
lemma WhileLoop_distinct[simp]:
\<open>WhileLoop p c \<noteq> Skip\<close>
\<open>WhileLoop p c \<noteq> c1 \<box> c2\<close>
\<open>WhileLoop p c \<noteq> c1 \<parallel> c2\<close>
\<open>WhileLoop p c \<noteq> Atomic b\<close>
\<open>Skip \<noteq> WhileLoop p c\<close>
\<open>c1 \<box> c2 \<noteq> WhileLoop p c\<close>
\<open>c1 \<parallel> c2 \<noteq> WhileLoop p c\<close>
\<open>Atomic b \<noteq> WhileLoop p c\<close>
\<open>WhileLoop p c \<noteq> \<mu> c\<close>
\<open>\<mu> c \<noteq> WhileLoop p c\<close>
by (simp add: WhileLoop_def; fail)+
end