-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutil.py
170 lines (130 loc) · 7.38 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from __future__ import print_function
import argparse
import os
import numpy as np
import torch
def adjust_learning_rate(epoch, opt, optimizer):
"""Sets the learning rate to the initial LR decayed by 0.2 every steep step"""
steps = np.sum(epoch > np.asarray(opt.lr_decay_epochs))
if steps > 0:
new_lr = opt.learning_rate * (opt.lr_decay_rate ** steps)
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def parse_option(CMC_training=False):
parser = argparse.ArgumentParser('Command Line Arguments')
parser.add_argument('--print_freq', type=int, default=10, help='print frequency')
parser.add_argument('--tb_freq', type=int, default=500, help='tb frequency')
parser.add_argument('--save_freq', type=int, default=5, help='save frequency')
parser.add_argument('--batch_size', type=int, default=256, help='batch_size')
parser.add_argument('--num_workers', type=int, default=8, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=400, help='number of training epochs')
# optimization
parser.add_argument('--opt', type=str, default='adam', help='optimizer')
parser.add_argument('--learning_rate', type=float, default=0.03, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='250,300,350', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# resume path
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# model definition
parser.add_argument('--model', type=str, default='alexnet', choices=['alexnet', 'resnet50', 'resnet101'])
parser.add_argument('--nce_k', type=int, default=4096)
parser.add_argument('--nce_t', type=float, default=0.07)
parser.add_argument('--nce_m', type=float, default=0.5)
parser.add_argument('--feat_dim', type=int, default=128, help='dim of feat for inner product')
parser.add_argument('--layer', type=int, default=5, help='which layer to evaluate')
# specify folder
parser.add_argument('--data_folder', type=str, default=None, help='path to data')
parser.add_argument('--model_path', type=str, default=None, help='path to save model')
# specify list of images to use
parser.add_argument('--image_list', type=str, default=None, help='list of images to use')
parser.add_argument('--train_image_list', type=str, default=None, help='list of images for training of the finetuned model')
parser.add_argument('--val_image_list', type=str, default=None, help='list of images for validation of the finetuned model')
# specify multilabel classification mapping
parser.add_argument('--multilabel_targets', type=str, default=None, help='path to pickeled dictionary of image:target mappings for multilabel datasets')
# specify path to save features
parser.add_argument('--features_path', type=str, default=None, help='path to features')
# specify wandb project name
parser.add_argument('--wandb_project', type=str, default=None, help='wandb project name')
# specify path to features for training and validation/test datasets for linear classifier
parser.add_argument('--train_data_path', type=str, default=None, help='path to train features')
parser.add_argument('--val_data_path', type=str, default=None, help='path to val features')
# data crop threshold
parser.add_argument('--crop_low', type=float, default=0.08, help='low area in crop')
parser.add_argument('--resize_image_aug', dest='resize_image_aug', action='store_true')
parser.set_defaults(resize_image_aug=False)
parser.add_argument('--evaluate', dest='evaluate', action='store_true')
parser.set_defaults(evaluate=False)
parser.add_argument('--multispectral', dest='multispectral', action='store_true')
parser.set_defaults(multispectral=False)
parser.add_argument('--pca', dest='pca', action='store_true')
parser.set_defaults(pca=False)
parser.add_argument('--multispectral_dataset', type=str, default='BigEarthNet', help='multispectral dataset to use')
parser.add_argument('--save_path', type=str, default=None, help='path to save finetuned model')
# parallel setting
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
opt = parser.parse_args()
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
if CMC_training:
opt.model_name = 'memory_nce_{}_{}_lr_{}_decay_{}_bsz_{}'.format(opt.nce_k, opt.model, opt.learning_rate,
opt.weight_decay, opt.batch_size)
opt.model_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.model_folder):
os.makedirs(opt.model_folder)
return opt
if __name__ == '__main__':
meter = AverageMeter()