-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain.py
executable file
·55 lines (40 loc) · 1.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright (c) 2021 Project Bee4Exp.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
""" Trains CNN segmentation model using synthetic datasets.
CL Args:
--train_data Path to HDF5 training dataset.
--val_data Path to HDF5 validation dataset.
--model Path to model save file.
"""
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping, ModelCheckpoint, LearningRateScheduler
from keras.utils import multi_gpu_model
from nets import SegmentationModel
from generator import HDF5Generator
from util import get_parser
import warnings
warnings.filterwarnings("ignore")
args = get_parser().parse_args()
TRAIN_DATASET = args.train_data
VALIDATION_DATASET = args.val_data
optimizer = Adam(lr=1e-3)
reduce_lr = LearningRateScheduler(lambda epoch, lr: lr/5 if ((epoch + 1) % 20) == 0 else lr, verbose=1)
early_stop = EarlyStopping(monitor='val_loss', patience=10)
checkpoint = ModelCheckpoint(filepath=args.model, period=1, save_best_only=True, mode='min')
model = SegmentationModel(input_shape=(256, 256, 5))
try:
model = multi_gpu_model(model)
except Exception:
pass
model.compile(optimizer=optimizer, loss='mse')
train_generator = HDF5Generator(TRAIN_DATASET, batch_size=64)
validation_generator = HDF5Generator(VALIDATION_DATASET, shuffle=False, batch_size=64)
model.fit_generator(train_generator,
epochs=500,
verbose=1,
callbacks=[reduce_lr, early_stop, checkpoint],
validation_data=validation_generator,
use_multiprocessing=False,
shuffle=False)