From 169a0ff911134b930adc0afc0d8c6f370091e10d Mon Sep 17 00:00:00 2001 From: youkaichao Date: Sun, 1 Dec 2024 00:41:38 -0800 Subject: [PATCH] [doc] add warning about comparing hf and vllm outputs (#10805) Signed-off-by: youkaichao --- docs/source/models/supported_models.rst | 3 +++ 1 file changed, 3 insertions(+) diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index f571b8bf6735e..9f3b6f59068e2 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -701,6 +701,9 @@ At vLLM, we are committed to facilitating the integration and support of third-p 2. **Best-Effort Consistency**: While we aim to maintain a level of consistency between the models implemented in vLLM and other frameworks like transformers, complete alignment is not always feasible. Factors like acceleration techniques and the use of low-precision computations can introduce discrepancies. Our commitment is to ensure that the implemented models are functional and produce sensible results. +.. tip:: + When comparing the output of :code:`model.generate` from HuggingFace Transformers with the output of :code:`llm.generate` from vLLM, note that the former reads the model's generation config file (i.e., `generation_config.json `__) and applies the default parameters for generation, while the latter only uses the parameters passed to the function. Ensure all sampling parameters are identical when comparing outputs. + 3. **Issue Resolution and Model Updates**: Users are encouraged to report any bugs or issues they encounter with third-party models. Proposed fixes should be submitted via PRs, with a clear explanation of the problem and the rationale behind the proposed solution. If a fix for one model impacts another, we rely on the community to highlight and address these cross-model dependencies. Note: for bugfix PRs, it is good etiquette to inform the original author to seek their feedback. 4. **Monitoring and Updates**: Users interested in specific models should monitor the commit history for those models (e.g., by tracking changes in the main/vllm/model_executor/models directory). This proactive approach helps users stay informed about updates and changes that may affect the models they use.