diff --git a/tests/conftest.py b/tests/conftest.py index 4c9180415da32..fc8bd1a473476 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -32,9 +32,10 @@ to_enc_dec_tuple_list, zip_enc_dec_prompts) from vllm.logger import init_logger from vllm.outputs import RequestOutput +from vllm.platforms import current_platform from vllm.sampling_params import BeamSearchParams from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, cuda_device_count_stateless, - identity, is_cpu) + identity) logger = init_logger(__name__) @@ -236,7 +237,8 @@ class HfRunner: def wrap_device(self, input: _T, device: Optional[str] = None) -> _T: if device is None: - return self.wrap_device(input, "cpu" if is_cpu() else "cuda") + return self.wrap_device( + input, "cpu" if current_platform.is_cpu() else "cuda") if hasattr(input, "device") and input.device.type == device: return input diff --git a/tests/encoder_decoder/test_e2e_correctness.py b/tests/encoder_decoder/test_e2e_correctness.py index 9324a737a779c..bef0c515b9073 100644 --- a/tests/encoder_decoder/test_e2e_correctness.py +++ b/tests/encoder_decoder/test_e2e_correctness.py @@ -7,8 +7,8 @@ import pytest from transformers import AutoModelForSeq2SeqLM +from vllm.platforms import current_platform from vllm.sequence import SampleLogprobs -from vllm.utils import is_cpu from ..conftest import DecoderPromptType from ..models.utils import check_logprobs_close @@ -35,7 +35,7 @@ def vllm_to_hf_output( @pytest.mark.parametrize("decoder_prompt_type", list(DecoderPromptType)) @pytest.mark.parametrize("enforce_eager", [True, False]) @pytest.mark.skipif( - is_cpu(), + current_platform.is_cpu(), reason="CPU backend is not currently supported with encoder/decoder models" ) def test_encoder_decoder_e2e( @@ -50,7 +50,7 @@ def test_encoder_decoder_e2e( enforce_eager: bool, ) -> None: ''' - End-to-End (E2E) test for the encoder-decoder framework. + End-to-End (E2E) test for the encoder-decoder framework. This test evaluates the encoder-decoder functionality using the BART model. We compare the outputs of the Hugging Face and vLLM implementations to ensure that both implementations produce consistent diff --git a/tests/kernels/test_attention_selector.py b/tests/kernels/test_attention_selector.py index 5671207ac847e..8bcee98403775 100644 --- a/tests/kernels/test_attention_selector.py +++ b/tests/kernels/test_attention_selector.py @@ -19,7 +19,8 @@ def test_env(name: str, device: str, monkeypatch): override_backend_env_variable(monkeypatch, name) if device == "cpu": - with patch("vllm.attention.selector.is_cpu", return_value=True): + with patch("vllm.attention.selector.current_platform.is_cpu", + return_value=True): backend = which_attn_to_use(16, torch.float16, torch.float16, 16, False) assert backend.name == "TORCH_SDPA" diff --git a/tests/models/decoder_only/language/test_phimoe.py b/tests/models/decoder_only/language/test_phimoe.py index 89afbcf1c03ac..c997359a2781e 100644 --- a/tests/models/decoder_only/language/test_phimoe.py +++ b/tests/models/decoder_only/language/test_phimoe.py @@ -5,7 +5,7 @@ import pytest import torch -from vllm.utils import is_cpu +from vllm.platforms import current_platform from ....utils import large_gpu_test from ...utils import check_logprobs_close @@ -70,7 +70,7 @@ def test_phimoe_routing_function(): assert torch.equal(topk_ids, ground_truth[test_id]["topk_ids"]) -@pytest.mark.skipif(condition=is_cpu(), +@pytest.mark.skipif(condition=current_platform.is_cpu(), reason="This test takes a lot time to run on CPU, " "and vllm CI's disk space is not enough for this model.") @large_gpu_test(min_gb=80) diff --git a/tests/models/decoder_only/vision_language/test_fuyu.py b/tests/models/decoder_only/vision_language/test_fuyu.py index 7827ecb19a744..1affcd10ee72d 100644 --- a/tests/models/decoder_only/vision_language/test_fuyu.py +++ b/tests/models/decoder_only/vision_language/test_fuyu.py @@ -3,8 +3,8 @@ import pytest from vllm.multimodal.utils import rescale_image_size +from vllm.platforms import current_platform from vllm.sequence import SampleLogprobs -from vllm.utils import is_cpu from ....conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets from ...utils import check_logprobs_close @@ -46,7 +46,7 @@ def run_test( All the image fixtures for the test are from IMAGE_ASSETS. For huggingface runner, we provide the PIL images as input. - For vllm runner, we provide MultiModalDataDict objects + For vllm runner, we provide MultiModalDataDict objects and corresponding MultiModalConfig as input. Note, the text input is also adjusted to abide by vllm contract. The text output is sanitized to be able to compare with hf. @@ -103,7 +103,7 @@ def run_test( target_dtype = "half" -if is_cpu(): +if current_platform.is_cpu(): target_dtype = "bfloat16" diff --git a/tests/models/decoder_only/vision_language/test_internvl.py b/tests/models/decoder_only/vision_language/test_internvl.py index 49cab75d8ea53..58d88f0a28829 100644 --- a/tests/models/decoder_only/vision_language/test_internvl.py +++ b/tests/models/decoder_only/vision_language/test_internvl.py @@ -7,7 +7,7 @@ from transformers import AutoConfig from vllm.multimodal.utils import rescale_image_size -from vllm.utils import is_cpu +from vllm.platforms import current_platform from ....conftest import (IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner, _ImageAssets) @@ -78,7 +78,7 @@ def run_test( All the image fixtures for the test are from IMAGE_ASSETS. For huggingface runner, we provide the PIL images as input. - For vllm runner, we provide MultiModalDataDict objects + For vllm runner, we provide MultiModalDataDict objects and corresponding MultiModalConfig as input. Note, the text input is also adjusted to abide by vllm contract. The text output is sanitized to be able to compare with hf. @@ -244,7 +244,7 @@ def run_awq_test( target_dtype = "half" -if is_cpu(): +if current_platform.is_cpu(): target_dtype = "bfloat16" diff --git a/tests/models/decoder_only/vision_language/test_phi3v.py b/tests/models/decoder_only/vision_language/test_phi3v.py index 808421abd9103..dfe10629f1c66 100644 --- a/tests/models/decoder_only/vision_language/test_phi3v.py +++ b/tests/models/decoder_only/vision_language/test_phi3v.py @@ -10,8 +10,9 @@ from vllm.model_executor.models.phi3v import _IMAGE_TOKEN_ID from vllm.multimodal import MultiModalRegistry from vllm.multimodal.utils import rescale_image_size +from vllm.platforms import current_platform from vllm.sequence import SampleLogprobs -from vllm.utils import is_cpu, is_hip +from vllm.utils import is_hip from ....conftest import (IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner, _ImageAssets) @@ -49,7 +50,7 @@ def vllm_to_hf_output(vllm_output: Tuple[List[int], str, target_dtype = "half" -if is_cpu(): +if current_platform.is_cpu(): target_dtype = "bfloat16" # ROCm Triton FA can run into shared memory issues with these models, diff --git a/tests/models/utils.py b/tests/models/utils.py index 2ea233a9a599c..f7802d98ad678 100644 --- a/tests/models/utils.py +++ b/tests/models/utils.py @@ -5,8 +5,8 @@ from vllm.config import ModelConfig, TaskOption from vllm.inputs import InputContext +from vllm.platforms import current_platform from vllm.sequence import Logprob, PromptLogprobs, SampleLogprobs -from vllm.utils import is_cpu TokensText = Tuple[List[int], str] @@ -19,7 +19,7 @@ def check_outputs_equal( name_1: str, ): """ - Compare the two sequences generated by different models, + Compare the two sequences generated by different models, which should be equal. """ assert len(outputs_0_lst) == len(outputs_1_lst) @@ -255,7 +255,7 @@ def build_model_context(model_name: str, mm_processor_kwargs: Optional[Dict] = None, limit_mm_per_prompt: Optional[Dict] = None): """Creates an InputContext for a given model. - + Args: model_name: Name of the model being considered. tokenizer_name: Name of the tokenizer being considered. @@ -270,7 +270,7 @@ def build_model_context(model_name: str, if tokenizer_name is None: tokenizer_name = model_name if dtype is None: - dtype = "bfloat16" if is_cpu() else "half" + dtype = "bfloat16" if current_platform.is_cpu() else "half" model_config = ModelConfig( model_name, diff --git a/tests/worker/test_encoder_decoder_model_runner.py b/tests/worker/test_encoder_decoder_model_runner.py index 3dccc1b325d95..e75884a7395e2 100644 --- a/tests/worker/test_encoder_decoder_model_runner.py +++ b/tests/worker/test_encoder_decoder_model_runner.py @@ -5,8 +5,9 @@ import torch from vllm.engine.arg_utils import EngineArgs +from vllm.platforms import current_platform from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata -from vllm.utils import is_cpu, make_tensor_with_pad +from vllm.utils import make_tensor_with_pad from vllm.worker.enc_dec_model_runner import EncoderDecoderModelRunner from vllm.worker.model_runner import _get_graph_batch_size @@ -31,7 +32,7 @@ def _create_model_runner(model: str, *args, return model_runner -@pytest.mark.skipif(condition=is_cpu(), +@pytest.mark.skipif(condition=current_platform.is_cpu(), reason="CPU backend is currently " "unsupported for encoder/ " "decoder models") @@ -74,7 +75,7 @@ def test_empty_seq_group(): assert return_seq_lens is None -@pytest.mark.skipif(condition=is_cpu(), +@pytest.mark.skipif(condition=current_platform.is_cpu(), reason="CPU backend is currently " "unsupported for encoder/ " "decoder models") @@ -264,7 +265,7 @@ def test_prepare_prompt(batch_size): assert torch.equal(actual, expected) -@pytest.mark.skipif(condition=is_cpu(), +@pytest.mark.skipif(condition=current_platform.is_cpu(), reason="CPU backend is currently " "unsupported for encoder/ " "decoder models") @@ -490,7 +491,7 @@ def test_prepare_decode(batch_size, multiple_seqs_per_seq_group): def test_prepare_decode_cuda_graph(batch_size, multiple_seqs_per_seq_group): """ Tests that for encoder-decoder models with CUDA Graph capture and replay - enabled, the tensors used during the decode phase are correctly padded + enabled, the tensors used during the decode phase are correctly padded for varying input batch sizes. """ model_runner = _create_model_runner( diff --git a/vllm/attention/backends/torch_sdpa.py b/vllm/attention/backends/torch_sdpa.py index ef8d576616838..353a4c186d1cb 100644 --- a/vllm/attention/backends/torch_sdpa.py +++ b/vllm/attention/backends/torch_sdpa.py @@ -10,9 +10,9 @@ AttentionMetadata, AttentionType) from vllm.attention.backends.utils import CommonAttentionState from vllm.attention.ops.paged_attn import PagedAttentionMetadata -from vllm.utils import is_cpu +from vllm.platforms import current_platform -if is_cpu(): +if current_platform.is_cpu(): try: from vllm.attention.ops.ipex_attn import PagedAttention except ImportError: @@ -234,10 +234,10 @@ def get_seq_len_block_table_args( on the type of attention operation. Decoder attn -> select entirely decoder self-attention-related fields - Encoder/decoder cross-attn -> select encoder sequence lengths & + Encoder/decoder cross-attn -> select encoder sequence lengths & cross-attn block-tables fields Encoder attn -> select encoder sequence lengths fields & no block tables - + Arguments: * attn_metadata: Attention metadata structure associated with attention diff --git a/vllm/attention/ops/blocksparse_attention/interface.py b/vllm/attention/ops/blocksparse_attention/interface.py index 1ead541f391b5..e4dc576d27932 100644 --- a/vllm/attention/ops/blocksparse_attention/interface.py +++ b/vllm/attention/ops/blocksparse_attention/interface.py @@ -3,7 +3,7 @@ import torch from vllm.platforms import current_platform -from vllm.utils import is_cpu, is_hip +from vllm.utils import is_hip from .utils import (dense_to_crow_col, get_head_sliding_step, get_sparse_attn_mask) @@ -32,7 +32,7 @@ def __init__( ): super().__init__() if use_spda is None: - use_spda = is_hip() or is_cpu() or not \ + use_spda = is_hip() or current_platform.is_cpu() or not \ IS_COMPUTE_8_OR_ABOVE device = device or (torch.cuda.current_device() if current_platform.is_cuda_alike() else "cpu") @@ -109,13 +109,13 @@ def varlen_attn(self, q, k, v: shape = (num_tokens, num_heads_q/kv, head_size). Support grouped attention, with `q[:, i*r:(i*r + r)]` is correspondent to `k[:, i]`, where `r` is the q/k ratio. - cu_seqlens_k: shape=(batch_size + 1,), - indicating segment of samples, + cu_seqlens_k: shape=(batch_size + 1,), + indicating segment of samples, e.g., `k[cu_seqlen[i]:cu_seqlne[i+1]]` is q of sample i cu_seqlens_q: shape=(batch_size + 1, ). Default None: same as cu_seqlens_k for prefilling or [0, 1, .., batch_size] for decoding. - The only case you need to specify is when q is a mix of + The only case you need to specify is when q is a mix of prefilling and decoding. sm_scale: softmax scale, default to 1/sqrt(head_size). @@ -171,7 +171,7 @@ def transpose_and_unpad(x_padded, cu_seqlens): def spda(self, q, k, v, cu_seqlens_k, cu_seqlens_q=None, sm_scale=None): """For CPU, V100 or other older GPUs. - NOTE: torch SPDA supports nested tensor, + NOTE: torch SPDA supports nested tensor, but seems extremely slow. Choose to pad instead. """ assert (cu_seqlens_q is None or @@ -201,8 +201,8 @@ def spda(self, q, k, v, cu_seqlens_k, cu_seqlens_q=None, sm_scale=None): return self.transpose_and_unpad(spda_output, cu_seqlens) def forward(self, q, k, v, cu_seqlens_k, cu_seqlens_q=None, sm_scale=None): - """Dispatch to `varlen_attn` (Ampere or newer) or - `self.spda`(cpu, Volta, Turing or older)based on + """Dispatch to `varlen_attn` (Ampere or newer) or + `self.spda`(cpu, Volta, Turing or older)based on the type of device used and cuda compute capability. q, k, v: shape = (num_tokens, num_heads_q/kv, head_size). @@ -213,8 +213,8 @@ def forward(self, q, k, v, cu_seqlens_k, cu_seqlens_q=None, sm_scale=None): cu_seqlens_q: shape=(batch_size + 1, ). Default None: same as cu_seqlens_k for prefilling or [0, 1, .., batch_size] for decoding. - The only case you need to specify - is when q is a mix of prefilling + The only case you need to specify + is when q is a mix of prefilling and decoding. sm_scale: softmax scale, default to 1/sqrt(head_size). diff --git a/vllm/attention/selector.py b/vllm/attention/selector.py index 4ff86573e664d..c4d02187e1658 100644 --- a/vllm/attention/selector.py +++ b/vllm/attention/selector.py @@ -10,7 +10,7 @@ from vllm.attention.backends.abstract import AttentionBackend from vllm.logger import init_logger from vllm.platforms import current_platform -from vllm.utils import STR_BACKEND_ENV_VAR, is_cpu, is_hip, is_openvino, is_xpu +from vllm.utils import STR_BACKEND_ENV_VAR, is_hip, is_openvino, is_xpu logger = init_logger(__name__) @@ -121,7 +121,7 @@ def get_attn_backend( ROCmFlashAttentionBackend) return ROCmFlashAttentionBackend elif backend == _Backend.TORCH_SDPA: - assert is_cpu(), RuntimeError( + assert current_platform.is_cpu(), RuntimeError( "Torch SDPA backend is only used for the CPU device.") logger.info("Using Torch SDPA backend.") from vllm.attention.backends.torch_sdpa import TorchSDPABackend @@ -183,7 +183,7 @@ def which_attn_to_use( if backend_by_env_var is not None: selected_backend = backend_name_to_enum(backend_by_env_var) - if is_cpu(): + if current_platform.is_cpu(): if selected_backend != _Backend.TORCH_SDPA: logger.info("Cannot use %s backend on CPU.", selected_backend) return _Backend.TORCH_SDPA diff --git a/vllm/model_executor/custom_op.py b/vllm/model_executor/custom_op.py index 549be116772c9..d7506d268e73b 100644 --- a/vllm/model_executor/custom_op.py +++ b/vllm/model_executor/custom_op.py @@ -7,7 +7,7 @@ from vllm.compilation.levels import CompilationLevel from vllm.logger import init_logger from vllm.platforms import current_platform -from vllm.utils import is_cpu, is_hip, is_xpu, print_warning_once +from vllm.utils import is_hip, is_xpu, print_warning_once logger = init_logger(__name__) @@ -74,7 +74,7 @@ def dispatch_forward(self): if is_hip(): return self.forward_hip - elif is_cpu(): + elif current_platform.is_cpu(): return self.forward_cpu elif current_platform.is_tpu(): return self.forward_tpu diff --git a/vllm/model_executor/models/qwen2_vl.py b/vllm/model_executor/models/qwen2_vl.py index a3540abdc23d3..9cca6b65e3277 100644 --- a/vllm/model_executor/models/qwen2_vl.py +++ b/vllm/model_executor/models/qwen2_vl.py @@ -78,7 +78,7 @@ class Qwen2VLImagePixelInputs(TypedDict): type: Literal["pixel_values"] data: torch.Tensor - """Shape: + """Shape: `(num_patches, num_channels * patch_size * patch_size)` """ @@ -102,14 +102,14 @@ class Qwen2VLImageEmbeddingInputs(TypedDict): class Qwen2VLVideoInputs(TypedDict): pixel_values_videos: torch.Tensor - """Shape: - `(num_patches, + """Shape: + `(num_patches, num_channels * temporal_patch_size * patch_size * patch_size)` """ video_grid_thw: torch.Tensor """Shape: `(num_videos, 3)` - + This should be in `(grid_t, grid_h, grid_w)` format. """ diff --git a/vllm/utils.py b/vllm/utils.py index 0147d595fec70..3fc7ef8538a79 100644 --- a/vllm/utils.py +++ b/vllm/utils.py @@ -317,15 +317,6 @@ def is_hip() -> bool: return torch.version.hip is not None -@lru_cache(maxsize=None) -def is_cpu() -> bool: - from importlib.metadata import PackageNotFoundError, version - try: - return "cpu" in version("vllm") - except PackageNotFoundError: - return False - - @lru_cache(maxsize=None) def is_openvino() -> bool: from importlib.metadata import PackageNotFoundError, version @@ -779,7 +770,7 @@ def is_pin_memory_available() -> bool: elif is_neuron(): print_warning_once("Pin memory is not supported on Neuron.") return False - elif is_cpu() or is_openvino(): + elif current_platform.is_cpu() or is_openvino(): return False return True