diff --git a/CMakeLists.txt b/CMakeLists.txt index ab91b86426cd4..5b0d0ba904c32 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -296,6 +296,11 @@ set(VLLM_MOE_EXT_SRC "csrc/moe/torch_bindings.cpp" "csrc/moe/topk_softmax_kernels.cu") +if(VLLM_GPU_LANG STREQUAL "CUDA") + list(APPEND VLLM_MOE_EXT_SRC + "csrc/moe/marlin_moe_ops.cu") +endif() + define_gpu_extension_target( _moe_C DESTINATION vllm diff --git a/csrc/moe/marlin_moe_ops.cu b/csrc/moe/marlin_moe_ops.cu new file mode 100644 index 0000000000000..1e170e80d2f70 --- /dev/null +++ b/csrc/moe/marlin_moe_ops.cu @@ -0,0 +1,1740 @@ +/* + * Modified by Neural Magic + * Copyright (C) Marlin.2024 Elias Frantar + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include + +#include +#include +#include +#include +#include + +#include + +template +inline std::string str(T x) { + return std::to_string(x); +} + +namespace marlin_moe { + +constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; } + +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 + +// Instances of `Vec` are used to organize groups of >>registers<<, as needed +// for instance as inputs to tensor core operations. Consequently, all +// corresponding index accesses must be compile-time constants, which is why we +// extensively use `#pragma unroll` throughout the kernel code to guarantee +// this. +template +struct Vec { + T elems[n]; + __device__ T& operator[](int i) { return elems[i]; } +}; + +using I4 = Vec; + +// Matrix fragments for tensor core instructions; their precise layout is +// documented here: +// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-floating-point-type +using FragA = Vec; +using FragB = Vec; +using FragC = Vec; +using FragS = Vec; // quantization scales + +// Predicated asynchronous global->shared copy; used for inputs A where we apply +// predication to handle batchsizes that are not multiples of 16. +__device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr, + bool pred = true) { + const int BYTES = 16; + uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); + asm volatile( + "{\n" + " .reg .pred p;\n" + " setp.ne.b32 p, %0, 0;\n" + " @p cp.async.cg.shared.global [%1], [%2], %3;\n" + "}\n" ::"r"((int)pred), + "r"(smem), "l"(glob_ptr), "n"(BYTES)); +} + +// Asynchronous global->shared copy +__device__ inline void cp_async4(void* smem_ptr, const void* glob_ptr) { + const int BYTES = 16; + uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); + asm volatile( + "{\n" + " cp.async.cg.shared.global [%0], [%1], %2;\n" + "}\n" ::"r"(smem), + "l"(glob_ptr), "n"(BYTES)); +} + +// Async copy fence. +__device__ inline void cp_async_fence() { + asm volatile("cp.async.commit_group;\n" ::); +} + +// Wait until at most `n` async copy stages are still pending. +template +__device__ inline void cp_async_wait() { + asm volatile("cp.async.wait_group %0;\n" ::"n"(n)); +} + +// m16n8k16 tensor core mma instruction with fp16 inputs and fp32 +// output/accumulation. +__device__ inline void mma(const FragA& a_frag, const FragB& frag_b, + FragC& frag_c) { + const uint32_t* a = reinterpret_cast(&a_frag); + const uint32_t* b = reinterpret_cast(&frag_b); + float* c = reinterpret_cast(&frag_c); + asm volatile( + "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 " + "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n" + : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3]) + : "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]), + "f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3])); +} + +// Instruction for loading a full 16x16 matrix fragment of operand A from shared +// memory, directly in tensor core layout. +__device__ inline void ldsm4(FragA& frag_a, const void* smem_ptr) { + uint32_t* a = reinterpret_cast(&frag_a); + uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); + asm volatile("ldmatrix.sync.aligned.m8n8.x4.shared.b16 {%0,%1,%2,%3}, [%4];\n" + : "=r"(a[0]), "=r"(a[1]), "=r"(a[2]), "=r"(a[3]) + : "r"(smem)); +} + +// Lookup-table based 3-input logical operation; explicitly used for +// dequantization as the compiler does not seem to automatically recognize it in +// all cases. +template +__device__ inline int lop3(int a, int b, int c) { + int res; + asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" + : "=r"(res) + : "r"(a), "r"(b), "r"(c), "n"(lut)); + return res; +} + +// Efficiently dequantize an int32 value into a full B-fragment of 4 fp16 +// values. We mostly follow the strategy in the link below, with some small +// changes: +// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h +__device__ inline FragB dequant(int q) { + const int LO = 0x000f000f; + const int HI = 0x00f000f0; + const int EX = 0x64006400; + // Guarantee that the `(a & b) | c` operations are LOP3s. + int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX); + int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX); + // We want signed int4 outputs, hence we fuse the `-8` symmetric zero point + // directly into `SUB` and `ADD`. + const int SUB = 0x64086408; + const int MUL = 0x2c002c00; + const int ADD = 0xd480d480; + FragB frag_b; + frag_b[0] = __hsub2(*reinterpret_cast(&lo), + *reinterpret_cast(&SUB)); + frag_b[1] = __hfma2(*reinterpret_cast(&hi), + *reinterpret_cast(&MUL), + *reinterpret_cast(&ADD)); + return frag_b; +} + +// Multiply dequantized values by the corresponding quantization scale; used +// only for grouped quantization. +__device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) { + half2 s = __half2half2(reinterpret_cast<__half*>(&frag_s)[i]); + frag_b[0] = __hmul2(frag_b[0], s); + frag_b[1] = __hmul2(frag_b[1], s); +} + +// Given 2 floats multiply by 2 scales (halves) +__device__ inline void scale_float(float* c, FragS& s) { + __half* s_ptr = reinterpret_cast<__half*>(&s); + c[0] = __fmul_rn(c[0], __half2float(s_ptr[0])); + c[1] = __fmul_rn(c[1], __half2float(s_ptr[1])); +} + +// Same as above, but for act_order (each K is multiplied individually) +__device__ inline void scale4(FragB& frag_b, FragS& frag_s_1, FragS& frag_s_2, + FragS& frag_s_3, FragS& frag_s_4, int i) { + __half2 s_val_1_2; + s_val_1_2.x = reinterpret_cast<__half*>(&frag_s_1)[i]; + s_val_1_2.y = reinterpret_cast<__half*>(&frag_s_2)[i]; + + __half2 s_val_3_4; + s_val_3_4.x = reinterpret_cast<__half*>(&frag_s_3)[i]; + s_val_3_4.y = reinterpret_cast<__half*>(&frag_s_4)[i]; + + frag_b[0] = __hmul2(frag_b[0], s_val_1_2); + frag_b[1] = __hmul2(frag_b[1], s_val_3_4); +} + +// Wait until barrier reaches `count`, then lock for current threadblock. +__device__ inline void barrier_acquire(int* lock, int count) { + if (threadIdx.x == 0) { + int state = -1; + do + // Guarantee that subsequent writes by this threadblock will be visible + // globally. + asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n" + : "=r"(state) + : "l"(lock)); + while (state != count); + } + __syncthreads(); +} + +// Release barrier and increment visitation count. +__device__ inline void barrier_release(int* lock, bool reset = false) { + __syncthreads(); + if (threadIdx.x == 0) { + if (reset) { + lock[0] = 0; + return; + } + int val = 1; + // Make sure that all writes since acquiring this barrier are visible + // globally, while releasing the barrier. + asm volatile("fence.acq_rel.gpu;\n"); + asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n" + : + : "l"(lock), "r"(val)); + } +} + +// For a given "a" of size [M,K] performs a permutation of the K columns based +// on the given "perm" indices. +__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr, + int const* __restrict__ perm_int_ptr, + int4* __restrict__ out_int4_ptr, int size_m, + int size_k, int block_rows) { + int start_row = block_rows * blockIdx.x; + int finish_row = start_row + block_rows; + if (finish_row > size_m) { + finish_row = size_m; + } + int cur_block_rows = finish_row - start_row; + + int row_stride = size_k * sizeof(half) / 16; + + auto permute_row = [&](int row) { + int iters = size_k / blockDim.x; + int rest = size_k % blockDim.x; + + int offset = row * row_stride; + + half const* a_row_half = reinterpret_cast(a_int4_ptr + offset); + half* out_half = reinterpret_cast(out_int4_ptr + offset); + + int base_k = 0; + + for (int i = 0; i < iters; i++) { + int cur_k = base_k + threadIdx.x; + int src_pos = perm_int_ptr[cur_k]; + + out_half[cur_k] = a_row_half[src_pos]; + + base_k += blockDim.x; + } + + if (rest) { + if (threadIdx.x < rest) { + int cur_k = base_k + threadIdx.x; + int src_pos = perm_int_ptr[cur_k]; + + out_half[cur_k] = a_row_half[src_pos]; + } + } + }; + + for (int i = 0; i < cur_block_rows; i++) { + int cur_row = start_row + i; + if (cur_row < size_m) { + permute_row(cur_row); + } + } +} + +__global__ void compute_expert_offsets(int const* __restrict__ topk_ids, + int* __restrict__ expert_offsets, + int topk_length, int block_size) { + int expert_id = threadIdx.x; + int num_experts = blockDim.x; + + int occurrences = 0; + for (int i = 0; i < topk_length; ++i) { + occurrences += (topk_ids[i] == expert_id); + } + expert_offsets[expert_id + 1] = occurrences; + __syncthreads(); + + if (threadIdx.x == 0) { + int tot_offset = 0; + expert_offsets[0] = 0; + for (int i = 0; i < num_experts; ++i) { + tot_offset += ceildiv(expert_offsets[i + 1], block_size) * block_size; + expert_offsets[i + 1] = tot_offset; + } + } + __syncthreads(); +} + +template shared + // fetch pipeline + const bool has_act_order, // whether act_order is enabled + const int group_blocks = -1 // number of consecutive 16x16 blocks + // with a separate quantization scale + > +__device__ inline void MarlinMoESingle( + const int4* __restrict__ A, // fp16 input matrix of shape mxk + const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn + int4* __restrict__ C, // fp16 output buffer of shape mxn + const int* __restrict__ sorted_ids, // int32 sorted ids of experts + const float* __restrict__ topk_weights, // float topk weights + const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape + // (k/groupsize)xn + const int* __restrict__ g_idx, // int32 group indices of shape k + const int* __restrict__ expert_offsets, + int num_groups, // number of scale groups per output channel + int expert_idx, // idx of current expert + int num_experts, // number of experts + int topk, // topk parameter of moe + int prob_m, // batch dimension m + int prob_n, // output dimension n + int prob_k, // reduction dimension k + int tot_m, // total number of rows in A and C + int* locks, // extra global storage for barrier synchronization + bool replicate_input, // do we use the same input for each expert? + bool apply_weights, // apply weights to output + int current_m_block // current m block to start kernel computation from +) { + // For larger GEMMs we run multiple batchsize 64 versions in parallel for a + // better partitioning with less reductions + int parallel = 1; + if (prob_m > 16 * thread_m_blocks) { + parallel = prob_m / (16 * thread_m_blocks); + prob_m = 16 * thread_m_blocks; + } + + int k_tiles = prob_k / 16 / thread_k_blocks; + int n_tiles = prob_n / 16 / thread_n_blocks; + int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x); + + if constexpr (!has_act_order && group_blocks != -1) { + if (group_blocks >= thread_k_blocks) { + // Ensure that the number of tiles in each stripe is a multiple of the + // groupsize; this avoids an annoying special case where a stripe starts + // in the middle of group. + iters = (group_blocks / thread_k_blocks) * + ceildiv(iters, (group_blocks / thread_k_blocks)); + } + } + + int slice_row = (iters * blockIdx.x) % k_tiles; + int slice_col_par = (iters * blockIdx.x) / k_tiles; + int slice_col = slice_col_par; + int slice_iters; // number of threadblock tiles in the current slice + int slice_count = + 0; // total number of active threadblocks in the current slice + int slice_idx; // index of threadblock in current slice; numbered bottom to + // top + + // We can easily implement parallel problem execution by just remapping + // indices and advancing global pointers + if (slice_col_par >= n_tiles) { + locks += (slice_col_par / n_tiles) * n_tiles; + slice_col = slice_col_par % n_tiles; + sorted_ids += (slice_col_par / n_tiles) * 16 * thread_m_blocks; + } + + // Compute all information about the current slice which is required for + // synchronization. + auto init_slice = [&]() { + slice_iters = + iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row); + if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0; + if (slice_iters == 0) return; + if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row; + slice_count = 1; + slice_idx = 0; + int col_first = iters * ceildiv(k_tiles * slice_col_par, iters); + if (col_first <= k_tiles * (slice_col_par + 1)) { + int col_off = col_first - k_tiles * slice_col_par; + slice_count = ceildiv(k_tiles - col_off, iters); + if (col_off > 0) slice_count++; + int delta_first = iters * blockIdx.x - col_first; + if (delta_first < 0 || (col_off == 0 && delta_first == 0)) + slice_idx = slice_count - 1; + else { + slice_idx = slice_count - 1 - delta_first / iters; + if (col_off > 0) slice_idx--; + } + } + if (slice_col == n_tiles) { + sorted_ids += 16 * thread_m_blocks; + locks += n_tiles; + slice_col = 0; + } + }; + init_slice(); + + // A sizes/strides + + // stride of the A matrix in global memory + int a_gl_stride = prob_k / 8; + // stride of an A matrix tile in shared memory + constexpr int a_sh_stride = 16 * thread_k_blocks / 8; + // delta between subsequent A tiles in global memory + constexpr int a_gl_rd_delta_o = 16 * thread_k_blocks / 8; + // between subsequent accesses within a tile + int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o); + // between shared memory writes + constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o); + // between shared memory tile reads + constexpr int a_sh_rd_delta_o = 2 * ((threads / 32) / (thread_n_blocks / 4)); + // within a shared memory tile + constexpr int a_sh_rd_delta_i = a_sh_stride * 16; + // overall size of a tile + constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks); + // number of shared write iterations for a tile + constexpr int a_sh_wr_iters = ceildiv(a_sh_stage, a_sh_wr_delta); + + // B sizes/strides + int b_gl_stride = 16 * prob_n / 32; + constexpr int b_sh_stride = 32 * thread_n_blocks / 4; + int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks; + int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride); + constexpr int b_sh_wr_delta = threads; + constexpr int b_sh_rd_delta = threads; + constexpr int b_sh_stage = b_sh_stride * thread_k_blocks; + constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta; + + // Scale sizes/strides without act_order + int s_gl_stride = prob_n / 8; + constexpr int s_sh_stride = 16 * thread_n_blocks / 8; + constexpr int s_tb_groups = !has_act_order && group_blocks < thread_k_blocks + ? thread_k_blocks / group_blocks + : 1; + constexpr int s_sh_stage = s_tb_groups * s_sh_stride; + int s_gl_rd_delta = s_gl_stride; + // Scale size/strides with act_order + constexpr int tb_k = 16 * thread_k_blocks; + constexpr int g_idx_stage = has_act_order ? (tb_k * sizeof(int)) / 16 : 0; + // constexpr int act_s_row_stride = 1; + // int act_s_col_stride = act_s_row_stride * num_groups; + int act_s_col_stride = 1; + int act_s_col_warp_stride = act_s_col_stride * 8; + int tb_n_warps = thread_n_blocks / 4; + int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps; + + constexpr int sorted_sh_stride = threads; + constexpr int sorted_gl_stride = threads; + + // Global A read index of current thread. + int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + + (threadIdx.x % a_gl_rd_delta_o); + a_gl_rd += a_gl_rd_delta_o * slice_row; + // Shared write index of current thread. + int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) + + (threadIdx.x % a_gl_rd_delta_o); + // Shared read index. + int a_sh_rd = + a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16; + a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4)); + + int b_gl_rd = + b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride); + b_gl_rd += b_sh_stride * slice_col; + b_gl_rd += b_gl_rd_delta_o * slice_row; + int b_sh_wr = threadIdx.x; + int b_sh_rd = threadIdx.x; + + // For act_order + constexpr int k_iter_size = tb_k / b_sh_wr_iters; + int slice_k_start = tb_k * slice_row; + int slice_k_finish = slice_k_start + tb_k * slice_iters; + int slice_k_start_shared_fetch = slice_k_start; + int slice_n_offset = act_s_col_tb_stride * slice_col; + + // No act_order + int s_gl_rd; + if constexpr (group_blocks == -1 || group_blocks == 0) { + s_gl_rd = s_sh_stride * slice_col + threadIdx.x; + } else { + s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) + + s_sh_stride * slice_col + threadIdx.x; + } + int s_sh_wr = threadIdx.x; + bool s_sh_wr_pred = threadIdx.x < s_sh_stride; + + // We use a different scale layout for grouped and column-wise quantization as + // we scale a `half2` tile in column-major layout in the former and in + // row-major in the latter case. + int s_sh_rd; + if constexpr (group_blocks != -1) + s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + + (threadIdx.x % 32) / 4; + else + s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + + (threadIdx.x % 32) % 4; + + int sh_first_group_id = -1; + int sh_num_groups = -1; + constexpr int sh_max_num_groups = 32; + + int shs_size; + if constexpr (has_act_order) + shs_size = sh_max_num_groups * s_sh_stride + threads; + else + shs_size = group_blocks > 0 ? stages * s_sh_stage : threads; + + extern __shared__ int4 sh[]; + // Shared memory storage for global fetch pipelines. + int4* sh_a = sh; + int4* sh_b = sh_a + (stages * a_sh_stage); + int4* sh_g_idx = sh_b + (stages * b_sh_stage); + int4* sh_s = sh_g_idx + (stages * g_idx_stage); + int* sh_sorted = (int*)(sh_s + shs_size); + + // Precompute which thread should not read memory in which iterations; this is + // needed if there are more threads than required for a certain tilesize or + // when the batchsize is not a multiple of 16. + bool a_sh_wr_pred[a_sh_wr_iters]; + #pragma unroll + for (int i = 0; i < a_sh_wr_iters; i++) { + int a_idx = a_sh_wr_delta * i + a_sh_wr; + int row = a_idx / a_gl_rd_delta_o; + if (row >= prob_m) { + a_sh_wr_pred[i] = false; + } else { + a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m; + } + } + + // To ensure that writing and reading A tiles to/from shared memory, the + // latter in fragment format, is fully bank conflict free, we need to use a + // rather fancy XOR-based layout. The key here is that neither reads nor + // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the + // same shared memory banks. Further, it seems (based on NSight-Compute) that + // each warp must also write a consecutive memory segment? + auto transform_a = [&](int i) { + int row = i / a_gl_rd_delta_o; + return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row; + }; + // Since the computation of this remapping is non-trivial and, due to our main + // loop unrolls, all shared memory accesses are static, we simply precompute + // both transformed reads and writes. + int a_sh_wr_trans[a_sh_wr_iters]; + #pragma unroll + for (int i = 0; i < a_sh_wr_iters; i++) + a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr); + int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks]; + #pragma unroll + for (int i = 0; i < b_sh_wr_iters; i++) { + #pragma unroll + for (int j = 0; j < thread_m_blocks; j++) + a_sh_rd_trans[i][j] = + transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd); + } + + // Since B-accesses have non-constant stride they have to be computed at + // runtime; we break dependencies between subsequent accesses with a tile by + // maintining multiple pointers (we have enough registers), a tiny + // optimization. + const int4* B_ptr[b_sh_wr_iters]; + #pragma unroll + for (int i = 0; i < b_sh_wr_iters; i++) + B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd; + + // Register storage for double buffer of shared memory reads. + FragA frag_a[2][thread_m_blocks]; + I4 frag_b_quant[2]; + FragC frag_c[thread_m_blocks][4][2]; + FragS frag_s[2][4]; // No act-order + FragS act_frag_s[2][4][4]; // For act-order + + // Zero accumulators. + auto zero_accums = [&]() { + #pragma unroll + for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++) + reinterpret_cast(frag_c)[i] = 0; + }; + + auto fetch_scales_to_shared = [&](bool is_async, int first_group_id, + int last_group_id) { + sh_first_group_id = first_group_id; + sh_num_groups = last_group_id - first_group_id + 1; + + if (sh_num_groups < sh_max_num_groups) { + sh_num_groups = sh_max_num_groups; + } + + if (sh_first_group_id + sh_num_groups > num_groups) { + sh_num_groups = num_groups - sh_first_group_id; + } + + int row_offset = first_group_id * s_gl_stride; + + if (is_async) { + for (int i = 0; i < sh_num_groups; i++) { + if (threadIdx.x < s_sh_stride) { + cp_async4_pred(&sh_s[(i * s_sh_stride) + threadIdx.x], + &scales_ptr[row_offset + (i * s_gl_stride) + + slice_n_offset + threadIdx.x]); + } + } + } else { + for (int i = 0; i < sh_num_groups; i++) { + if (threadIdx.x < s_sh_stride) { + sh_s[(i * s_sh_stride) + threadIdx.x] = + scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset + + threadIdx.x]; + } + } + } + }; + // Asynchronously fetch the next A, B and s tile from global to the next + // shared memory pipeline location. + auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) { + if (pred) { + int4* sh_a_stage = sh_a + a_sh_stage * pipe; + #pragma unroll + for (int i = 0; i < a_sh_wr_iters; i++) { + int a_idx = a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off; + int row = a_idx / a_gl_stride; + int sorted_row = + replicate_input ? sorted_ids[row] / topk : sorted_ids[row]; + int new_idx = sorted_row * a_gl_stride + a_idx % a_gl_stride; + if (sorted_row < tot_m * (replicate_input ? 1 : topk) && + new_idx < a_gl_stride * tot_m * (replicate_input ? 1 : topk)) { + cp_async4_pred(&sh_a_stage[a_sh_wr_trans[i]], &A[new_idx], + a_sh_wr_pred[i]); + } + } + int4* sh_b_stage = sh_b + b_sh_stage * pipe; + #pragma unroll + for (int i = 0; i < b_sh_wr_iters; i++) { + cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]); + B_ptr[i] += b_gl_rd_delta_o; + } + + if constexpr (has_act_order) { + // Fetch g_idx thread-block portion + int full_pipe = a_off; + int cur_k = slice_k_start_shared_fetch + tb_k * full_pipe; + if (cur_k < prob_k && cur_k < slice_k_finish) { + int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; + + int4 const* cur_g_idx_stage_ptr = + reinterpret_cast(&g_idx[cur_k]); + + if (threadIdx.x < g_idx_stage) { + cp_async4_pred(&sh_g_idx_stage[threadIdx.x], + &cur_g_idx_stage_ptr[threadIdx.x]); + } + } + } else { + if constexpr (group_blocks != -1) { + int4* sh_s_stage = sh_s + s_sh_stage * pipe; + + if constexpr (group_blocks >= thread_k_blocks) { + // Only fetch scales if this tile starts a new group + if (pipe % (group_blocks / thread_k_blocks) == 0) { + if (s_sh_wr_pred) { + cp_async4(&sh_s_stage[s_sh_wr], &scales_ptr[s_gl_rd]); + } + s_gl_rd += s_gl_rd_delta; + } + } else { + for (int i = 0; i < s_tb_groups; i++) { + if (s_sh_wr_pred) { + cp_async4(&sh_s_stage[i * s_sh_stride + s_sh_wr], + &scales_ptr[s_gl_rd]); + } + s_gl_rd += s_gl_rd_delta; + } + } + } + } + } + // Insert a fence even when we are winding down the pipeline to ensure that + // waiting is also correct at this point. + cp_async_fence(); + }; + + // TODO we are currently hitting illegal memory accesses when fetching + // sorted_ids to shared data: fix this + auto fetch_sorted_ids_to_shared = [&]() { + const int mpt = ceildiv(prob_m, threads); + for (int i = 0; i < mpt; i++) { + if ((i * sorted_gl_stride) + threadIdx.x < prob_m) { + sh_sorted[(i * sorted_sh_stride) + threadIdx.x] = + sorted_ids[(i * sorted_gl_stride) + threadIdx.x]; + } + } + }; + + // Wait until the next thread tile has been loaded to shared memory. + auto wait_for_stage = [&]() { + // We only have `stages - 2` active fetches since we are double buffering + // and can only issue the next fetch when it is guaranteed that the previous + // shared memory load is fully complete (as it may otherwise be + // overwritten). + cp_async_wait(); + __syncthreads(); + }; + + // Load the next sub-tile from the current location in the shared memory pipe + // into the current register buffer. + auto fetch_to_registers = [&](int k, int pipe) { + int4* sh_a_stage = sh_a + a_sh_stage * pipe; + #pragma unroll + for (int i = 0; i < thread_m_blocks; i++) + ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]); + int4* sh_b_stage = sh_b + b_sh_stage * pipe; + frag_b_quant[k % 2] = *reinterpret_cast( + &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd]); + }; + + bool is_same_group[stages]; + int same_group_id[stages]; + + auto init_same_group = [&](int pipe) { + int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; + int* sh_g_idx_int_ptr = reinterpret_cast(sh_g_idx_stage); + + int group_id_1 = sh_g_idx_int_ptr[0]; + int group_id_2 = sh_g_idx_int_ptr[tb_k - 1]; + + is_same_group[pipe] = group_id_1 == group_id_2; + same_group_id[pipe] = group_id_1; + }; + + auto fetch_scales_to_registers = [&](int k, int full_pipe) { + int pipe = full_pipe % stages; + + if constexpr (!has_act_order) { + // No act-order case + if constexpr (group_blocks != -1) { + if constexpr (group_blocks >= thread_k_blocks) { + int4* sh_s_stage = + sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) * + (pipe / (group_blocks / thread_k_blocks))); + reinterpret_cast(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd]; + } else { + int warp_id = threadIdx.x / 32; + int n_warps = thread_n_blocks / 4; + + int warp_row = warp_id / n_warps; + + int cur_k = warp_row * 16; + cur_k += k_iter_size * (k % b_sh_wr_iters); + + int k_blocks = cur_k / 16; + int cur_group_id = k_blocks / group_blocks; + + int4* sh_s_stage = sh_s + s_sh_stage * pipe; + + reinterpret_cast(&frag_s[k % 2])[0] = + sh_s_stage[s_sh_rd + cur_group_id * s_sh_stride]; + } + } + + return; + } + + // Act-order case + + // Determine K of the "current" thread-block + int cur_k = slice_k_start + tb_k * full_pipe; + if (cur_k >= prob_k || cur_k >= slice_k_finish) { + return; + } + + // Reset (to current thread-block) since we read g_idx portion from the + // shared memory + cur_k = 0; + + // Progress to current iteration + cur_k += k_iter_size * (k % b_sh_wr_iters); + + // Determine "position" inside the thread-block (based on warp and + // thread-id) + int warp_id = threadIdx.x / 32; + int n_warps = + thread_n_blocks / 4; // Each warp processes 4 16-size tiles over N + + int warp_row = warp_id / n_warps; + int warp_col = warp_id % n_warps; + + cur_k += warp_row * 16; + + int th_id = threadIdx.x % 32; + cur_k += (th_id % 4) * 2; // Due to tensor-core layout for fp16 B matrix + + int s_col_shift = + /*slice_n_offset +*/ (act_s_col_warp_stride * warp_col) + + (th_id / 4) * act_s_col_stride; + + if (is_same_group[pipe]) { + if (k % 2 == 0) { + *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))) = + sh_s[(same_group_id[pipe] - sh_first_group_id) * s_sh_stride + + s_col_shift]; + } else { + *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))) = + *(reinterpret_cast(&(act_frag_s[(k - 1) % 2][0][0]))); + } + + for (int i = 1; i < 4; i++) { + *(reinterpret_cast(&(act_frag_s[k % 2][i][0]))) = + *(reinterpret_cast(&(act_frag_s[k % 2][0][0]))); + } + return; + } + + int4* sh_g_idx_stage = sh_g_idx + g_idx_stage * pipe; + int* sh_g_idx_int_ptr = reinterpret_cast(sh_g_idx_stage); + + constexpr int k_frag_offsets[4] = {0, 1, 8, + 9}; // Tensor core offsets per thread + + #pragma unroll + for (int i = 0; i < 4; i++) { + int actual_k = cur_k + k_frag_offsets[i]; + + int group_id = sh_g_idx_int_ptr[actual_k]; + int rel_group_id = group_id - sh_first_group_id; + + *(reinterpret_cast(&(act_frag_s[k % 2][i][0]))) = + sh_s[rel_group_id * s_sh_stride + s_col_shift]; + } + }; + + // Execute the actual tensor core matmul of a sub-tile. + auto matmul = [&](int k) { + // We have the m dimension as the inner loop in order to encourage overlapping + // dequantization and matmul operations. + #pragma unroll + for (int j = 0; j < 4; j++) { + int b_quant = frag_b_quant[k % 2][j]; + int b_quant_shift = b_quant >> 8; + + FragB frag_b0 = dequant(b_quant); + + // Apply scale to frag_b0 + if constexpr (has_act_order) { + scale4(frag_b0, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j], + act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 0); + } else { + if constexpr (group_blocks != -1) { + scale(frag_b0, frag_s[k % 2][j], 0); + } + } + + FragB frag_b1 = dequant(b_quant_shift); + + // Apply scale to frag_b1 + if constexpr (has_act_order) { + scale4(frag_b1, act_frag_s[k % 2][0][j], act_frag_s[k % 2][1][j], + act_frag_s[k % 2][2][j], act_frag_s[k % 2][3][j], 1); + + } else { + if constexpr (group_blocks != -1) { + scale(frag_b1, frag_s[k % 2][j], 1); + } + } + + #pragma unroll + for (int i = 0; i < thread_m_blocks; i++) { + mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]); + mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]); + } + } + }; + + // Since we slice across the k dimension of a tile in order to increase the + // number of warps while keeping the n dimension of a tile reasonable, we have + // multiple warps that accumulate their partial sums of the same output + // location; which we have to reduce over in the end. We do in shared memory. + auto thread_block_reduce = [&]() { + constexpr int red_off = threads / b_sh_stride / 2; + if (red_off >= 1) { + int red_idx = threadIdx.x / b_sh_stride; + constexpr int red_sh_stride = b_sh_stride * 4 * 2; + constexpr int red_sh_delta = b_sh_stride; + int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) + + (threadIdx.x % b_sh_stride); + + // Parallel logarithmic shared memory reduction. We make sure to avoid any + // unnecessary read or write iterations, e.g., for two warps we write only + // once by warp 1 and read only once by warp 0. + + #pragma unroll + for (int m_block = 0; m_block < thread_m_blocks; m_block++) { + #pragma unroll + for (int i = red_off; i > 0; i /= 2) { + if (i <= red_idx && red_idx < 2 * i) { + #pragma unroll + for (int j = 0; j < 4 * 2; j++) { + int red_sh_wr = + red_sh_delta * j + (red_sh_rd - red_sh_stride * i); + if (i < red_off) { + float* c_rd = + reinterpret_cast(&sh[red_sh_delta * j + red_sh_rd]); + float* c_wr = reinterpret_cast(&sh[red_sh_wr]); + #pragma unroll + for (int k = 0; k < 4; k++) + reinterpret_cast(frag_c)[4 * 2 * m_block + j][k] += + c_rd[k] + c_wr[k]; + } + sh[red_sh_wr] = + reinterpret_cast(&frag_c)[4 * 2 * m_block + j]; + } + } + __syncthreads(); + } + if (red_idx == 0) { + #pragma unroll + for (int i = 0; i < 4 * 2; i++) { + float* c_rd = + reinterpret_cast(&sh[red_sh_delta * i + red_sh_rd]); + #pragma unroll + for (int j = 0; j < 4; j++) + reinterpret_cast(frag_c)[4 * 2 * m_block + i][j] += + c_rd[j]; + } + } + __syncthreads(); + } + } + }; + + // Since multiple threadblocks may process parts of the same column slice, we + // finally have to globally reduce over the results. As the striped + // partitioning minimizes the number of such reductions and our outputs are + // usually rather small, we perform this reduction serially in L2 cache. + auto global_reduce = [&](bool first = false, bool last = false) { + // We are very careful here to reduce directly in the output buffer to + // maximize L2 cache utilization in this step. To do this, we write out + // results in FP16 (but still reduce with FP32 compute). + constexpr int active_threads = 32 * thread_n_blocks / 4; + if (threadIdx.x < active_threads) { + int c_gl_stride = prob_n / 8; + int c_gl_wr_delta_o = 8 * c_gl_stride; + int c_gl_wr_delta_i = 4 * (active_threads / 32); + int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) + + 4 * (threadIdx.x / 32) + threadIdx.x % 4; + c_gl_wr += (2 * thread_n_blocks) * slice_col; + constexpr int c_sh_wr_delta = active_threads; + int c_sh_wr = threadIdx.x; + + int row = (threadIdx.x % 32) / 4; + + if (!first) { + // Interestingly, doing direct global accesses here really seems to mess up + // the compiler and lead to slowdowns, hence we also use async-copies even + // though these fetches are not actually asynchronous. + #pragma unroll + for (int i = 0; i < thread_m_blocks * 4; i++) { + int c_idx = + c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2); + int sorted_row = sorted_ids[c_idx / c_gl_stride]; + int new_idx = sorted_row * c_gl_stride + c_idx % c_gl_stride; + cp_async4_pred(&sh[c_sh_wr + c_sh_wr_delta * i], &C[new_idx], + sorted_row < tot_m * topk && + (8 * (i / 2) + row < prob_m && + (i < (thread_m_blocks - 1) * 4 || + sorted_ids[8 * (i / 2) + row] < tot_m * topk))); + } + cp_async_fence(); + cp_async_wait<0>(); + } + + #pragma unroll + for (int i = 0; i < thread_m_blocks * 4; i++) { + if (8 * (i / 2) + row < prob_m && + (i < (thread_m_blocks - 1) * 4 || + sorted_ids[8 * (i / 2) + row] < tot_m * topk)) { + if (!first) { + int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta]; + #pragma unroll + for (int j = 0; j < 2 * 4; j++) { + reinterpret_cast( + &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] += + __half2float(reinterpret_cast<__half*>(&c_red)[j]); + } + } + if (!last) { + int4 c; + #pragma unroll + for (int j = 0; j < 2 * 4; j++) { + reinterpret_cast<__half*>(&c)[j] = + __float2half(reinterpret_cast( + &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]); + } + int c_idx = + c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2); + int row = sorted_ids[c_idx / c_gl_stride]; + if (row < tot_m * topk) { + int new_idx = row * c_gl_stride + c_idx % c_gl_stride; + C[new_idx] = c; + } + } + } + } + } + }; + + // Write out the reduce final result in the correct layout. We only actually + // reshuffle matrix fragments in this step, the reduction above is performed + // in fragment layout. + auto write_result = [&]() { + int c_gl_stride = prob_n / 8; + constexpr int c_sh_stride = 2 * thread_n_blocks + 1; + int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks)); + constexpr int c_sh_rd_delta = + c_sh_stride * (threads / (2 * thread_n_blocks)); + + int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) + + (threadIdx.x % (2 * thread_n_blocks)); + c_gl_wr += (2 * thread_n_blocks) * slice_col; + int c_sh_wr = + (4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4; + c_sh_wr += 32 * (threadIdx.x / 32); + int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) + + (threadIdx.x % (2 * thread_n_blocks)); + + int c_gl_wr_end = c_gl_stride * prob_m; + + // We first reorder in shared memory to guarantee the most efficient final + // global write patterns + auto write = [&](int idx, float c0, float c1, FragS& s) { + half2 res = __halves2half2(__float2half(c0), __float2half(c1)); + + // For per-column quantization we finally apply the scale here + if constexpr (!has_act_order && group_blocks == -1) { + res = __hmul2(res, s[0]); + } + + ((half2*)sh)[idx] = res; + }; + if (threadIdx.x / 32 < thread_n_blocks / 4) { + #pragma unroll + for (int i = 0; i < thread_m_blocks; i++) { + #pragma unroll + for (int j = 0; j < 4; j++) { + int wr = c_sh_wr + 8 * j; + write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0], + frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]); + write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2], + frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]); + write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0], + frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]); + write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2], + frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]); + } + c_sh_wr += 16 * (4 * c_sh_stride); + } + } + __syncthreads(); + + #pragma unroll + for (int i = 0; + i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks)); + i++) { + if (c_gl_wr < c_gl_wr_end) { + int row = sorted_ids[c_gl_wr / c_gl_stride]; + if (row < tot_m * topk) { + int off = row * c_gl_stride + c_gl_wr % c_gl_stride; + if (!apply_weights) { + C[off] = sh[c_sh_rd]; + } else { + __half* ctrg = reinterpret_cast<__half*>(&C[off]); + __half* csrc = reinterpret_cast<__half*>(&sh[c_sh_rd]); + for (int j = 0; j < 8; ++j) { + ctrg[j] = __float2half(topk_weights[row] * __half2float(csrc[j])); + } + } + c_gl_wr += c_gl_wr_delta; + c_sh_rd += c_sh_rd_delta; + } + } + } + }; + + // Start global fetch and register load pipelines. + auto start_pipes = [&]() { + // TODO re-enable after fixing this function + // fetch_sorted_ids_to_shared(); + __syncthreads(); + + #pragma unroll + for (int i = 0; i < stages - 1; i++) { + if (has_act_order && i == 0) { + int last_g_idx = slice_k_start + stages * tb_k * 2; + if (last_g_idx >= prob_k) { + last_g_idx = prob_k - 1; + } + fetch_scales_to_shared(true, g_idx[slice_k_start], g_idx[last_g_idx]); + } + fetch_to_shared(i, i, i < slice_iters); + } + + zero_accums(); + wait_for_stage(); + init_same_group(0); + fetch_to_registers(0, 0); + fetch_scales_to_registers(0, 0); + a_gl_rd += a_gl_rd_delta_o * (stages - 1); + slice_k_start_shared_fetch += tb_k * (stages - 1); + }; + if (slice_iters) { + start_pipes(); + } + + // Main loop. + while (slice_iters) { + // We unroll over both the global fetch and the register load pipeline to + // ensure all shared memory accesses are static. Note that both pipelines + // have even length meaning that the next iteration will always start at + // index 0. + #pragma unroll + for (int pipe = 0; pipe < stages;) { + #pragma unroll + for (int k = 0; k < b_sh_wr_iters; k++) { + fetch_to_registers(k + 1, pipe % stages); + fetch_scales_to_registers(k + 1, pipe); + if (k == b_sh_wr_iters - 2) { + fetch_to_shared((pipe + stages - 1) % stages, pipe, + slice_iters >= stages); + pipe++; + wait_for_stage(); + init_same_group(pipe % stages); + } + matmul(k); + } + slice_iters--; + if (slice_iters == 0) { + break; + } + } + + a_gl_rd += a_gl_rd_delta_o * stages; + slice_k_start += tb_k * stages; + slice_k_start_shared_fetch += tb_k * stages; + + if constexpr (has_act_order) { + int first_group_id = g_idx[slice_k_start]; + int last_g_idx = slice_k_start + stages * tb_k * 2; + if (last_g_idx >= prob_k) { + last_g_idx = prob_k - 1; + } + int last_group_id = g_idx[last_g_idx]; + if (last_group_id >= sh_first_group_id + sh_num_groups) { + fetch_scales_to_shared(false, first_group_id, last_group_id); + __syncthreads(); + } + } + + // Process results and, if necessary, proceed to the next column slice. + // While this pattern may not be the most readable, other ways of writing + // the loop seemed to noticeably worse performance after compilation. + if (slice_iters == 0) { + cp_async_wait<0>(); + bool last = slice_idx == slice_count - 1; + // For per-column scales, we only fetch them here in the final step before + // write-out + if constexpr (!has_act_order && group_blocks == -1) { + if (last) { + if (s_sh_wr_pred) { + cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]); + } + cp_async_fence(); + } + } + + thread_block_reduce(); + if constexpr (!has_act_order && group_blocks == -1) { + if (last) { + cp_async_wait<0>(); + __syncthreads(); + if (threadIdx.x / 32 < thread_n_blocks / 4) { + reinterpret_cast(&frag_s)[0] = sh_s[s_sh_rd + 0]; + reinterpret_cast(&frag_s)[1] = sh_s[s_sh_rd + 4]; + } + } + } + if (slice_count > 1) { // only globally reduce if there is more than one + // block in a slice + barrier_acquire(&locks[slice_col], slice_idx); + global_reduce(slice_idx == 0, last); + barrier_release(&locks[slice_col], last); + } + if (last) // only the last block in a slice actually writes the result + write_result(); + slice_row = 0; + slice_col_par++; + slice_col++; + init_slice(); + if (slice_iters) { + a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + + (threadIdx.x % a_gl_rd_delta_o); + #pragma unroll + for (int i = 0; i < b_sh_wr_iters; i++) + B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles; + if (slice_col == 0) { + #pragma unroll + for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride; + } + + // Update slice k/n for scales loading + if constexpr (has_act_order) { + slice_k_start = tb_k * slice_row; + slice_k_finish = slice_k_start + tb_k * slice_iters; + slice_k_start_shared_fetch = slice_k_start; + slice_n_offset = act_s_col_tb_stride * slice_col; + + } else { + s_gl_rd = s_sh_stride * slice_col + threadIdx.x; + } + start_pipes(); + } + } + } +} + +template shared + // fetch pipeline + const bool has_act_order, // whether act_order is enabled + const int group_blocks = -1 // number of consecutive 16x16 blocks + // with a separate quantization scale + > +__global__ void MarlinMoE( + const int4* __restrict__ A, // fp16 input matrix of shape mxk + const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn + int4* __restrict__ C, // fp16 output buffer of shape mxn + const int* __restrict__ sorted_ids_base, // int32 sorted ids of experts + const float* __restrict__ topk_weights, // float topk weights + const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape + // (k/groupsize)xn + const int* __restrict__ g_idx, // int32 group indices of shape k + const int* __restrict__ expert_offsets, + int num_groups, // number of scale groups per output channel + int expert_idx, // idx of current expert + int num_experts, // number of experts + int topk, // topk parameter of moe + int prob_m, // batch dimension m + int prob_n, // output dimension n + int prob_k, // reduction dimension k + int tot_m, // total number of rows in A and C + int* locks, // extra global storage for barrier synchronization + bool replicate_input, // do we use the same input for each expert? + bool apply_weights, // apply weights to output + int current_m_block, // current m block to start kernel computation from + int max_par // maximum parallelism +) { + int m_block_ctr = current_m_block; + + const int* sorted_ids_expert = + sorted_ids_base + expert_offsets[expert_idx] + m_block_ctr * 4 * max_par; + int tot_its = expert_offsets[expert_idx + 1] - expert_offsets[expert_idx]; + if (tot_its == 0) { + return; + } + int tot_m_blocks = ceildiv(tot_its, 16); + int pad = 16 * tot_m_blocks - tot_its; + + if (m_block_ctr >= tot_m_blocks) { + return; + } + + int max_block = tot_m_blocks - m_block_ctr; + prob_m = tot_its - 16 * m_block_ctr; + + int par = 1; + if (max_block > 4) { + // Note that parallel > 1 currently only works for inputs without any + // padding + par = (16 * max_block - pad) / 64; + par = min((16 * max_block - pad) / 64, max_par); + prob_m = 64 * par; + m_block_ctr += 4 * (par - 1); + max_block = 4; + } + + if (max_block == 1) { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); + } else if (max_block == 2) { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); + } else if (max_block == 3) { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); + } else { + MarlinMoESingle( + A, B, C, sorted_ids_expert, topk_weights, scales_ptr, g_idx, + expert_offsets, num_groups, expert_idx, num_experts, topk, prob_m, + prob_n, prob_k, tot_m, locks, replicate_input, apply_weights, + current_m_block); + } +} + +#else + +__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr, + int const* __restrict__ perm_int_ptr, + int4* __restrict__ out_int4_ptr, int size_m, + int size_k, int block_rows) { + // Marlin is not implemented yet for SM < 8.0 + assert(false); + return; +} + +__global__ void compute_expert_offsets(int const* __restrict__ topk_ids, + int* __restrict__ expert_offsets, + int topk_length, int block_size) { + // Marlin is not implemented yet for SM < 8.0 + assert(false); + return; +} + +template shared + // fetch pipeline + const bool has_act_order, // whether act_order is enabled + const int group_blocks = -1 // number of consecutive 16x16 blocks + // with a separate quantization scale + > +__global__ void MarlinMoE( + const int4* __restrict__ A, // fp16 input matrix of shape mxk + const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn + int4* __restrict__ C, // fp16 output buffer of shape mxn + const int* __restrict__ sorted_ids, // int32 sorted ids of experts + const float* __restrict__ topk_weights, // float topk weights + const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape + // (k/groupsize)xn + const int* __restrict__ g_idx, // int32 group indices of shape k + const int* __restrict__ expert_offsets, + int num_groups, // number of scale groups per output channel + int expert_idx, // idx of current expert + int num_experts, // number of experts + int topk, // topk parameter of moe + int prob_m, // batch dimension m + int prob_n, // output dimension n + int prob_k, // reduction dimension k + int tot_m, // total number of rows in A and C + int* locks, // extra global storage for barrier synchronization + bool replicate_input, // do we use the same input for each expert? + bool apply_weights, // apply weights to output + int current_m_block, // current m block to start kernel computation from + int max_par // maximum parallelism +) { + // Marlin is not implemented yet for SM < 8.0 + assert(false); + return; +} + +#endif + +// 8 warps are a good choice since every SM has 4 schedulers and having more +// than 1 warp per schedule allows some more latency hiding. At the same time, +// we want relatively few warps to have many registers per warp and small tiles. +const int USER_THREADS = + 256; // Note: This is only used with user-provided thread_k/n +const int STAGES = 4; // 4 pipeline stages fit into shared memory +// const int SHARED_MEM = +// 96 * 1024; // max shared memory on compute capability 8.6 (< 8.0) + +static constexpr int min_thread_n = 64; +static constexpr int min_thread_k = 64; + +#define __CALL_IF_MOE(THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \ + HAS_ACT_ORDER, GROUP_BLOCKS, NUM_THREADS) \ + else if (thread_m_blocks == THREAD_M_BLOCKS && \ + thread_n_blocks == THREAD_N_BLOCKS && \ + thread_k_blocks == THREAD_K_BLOCKS && \ + has_act_order == HAS_ACT_ORDER && group_blocks == GROUP_BLOCKS && \ + num_threads == NUM_THREADS) { \ + cudaFuncSetAttribute( \ + MarlinMoE, \ + cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ + MarlinMoE \ + <<>>( \ + A_ptr, B_ptr, C_ptr, sorted_ids_ptr, topk_weights_ptr, s_ptr, \ + g_idx_ptr, expert_offsets_ptr, num_groups, expert_idx, \ + num_experts, topk, prob_m, prob_n, prob_k, tot_m, locks, \ + replicate_input, apply_weights, m_block, max_par); \ + } + +typedef struct { + int thread_k; + int thread_n; + int num_threads; +} thread_config_t; + +thread_config_t small_batch_thread_configs[] = { + // Ordered by priority + + // thread_k, thread_n, num_threads + {128, 128, 256}, // Default + {128, 64, 128}, // Reduce N 2X, same K + {64, 256, 256}, // Reduce K 2X, increase N 2X + {64, 128, 128}, // Reduce K 2X, same N +}; + +thread_config_t large_batch_thread_configs[] = { + // Ordered by priority + + // thread_k, thread_n, num_threads + {64, 256, 256}, // Default + {128, 128, 256}, // Reduce N 2X, increase K 2X + {64, 128, 128}, // Reduce N 2X, same K + {128, 64, 128}, // Reduce N 4X, increase K 2X +}; + +bool is_valid_config(thread_config_t const& th_config, int prob_m, int prob_n, + int prob_k) { + // Sanity + if (th_config.thread_k == -1 || th_config.thread_n == -1 || + th_config.num_threads == -1) { + return false; + } + + // Verify K/N are divisible by thread K/N + if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) { + return false; + } + + // thread_k can be only 128 or 64 (because it must be less than groupsize + // which is 128) + if (th_config.thread_k != 128 && th_config.thread_k != 64) { + return false; + } + + // Verify min for thread K/N + if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) { + return false; + } + + // num_threads must be at least 128 (= 4 warps) + if (th_config.num_threads < 128) { + return false; + } + + return true; +} + +thread_config_t determine_thread_config(int prob_m, int prob_n, int prob_k) { + if (prob_m <= 16) { + for (auto th_config : small_batch_thread_configs) { + if (is_valid_config(th_config, prob_m, prob_n, prob_k)) { + return th_config; + } + } + + } else { + for (auto th_config : large_batch_thread_configs) { + if (is_valid_config(th_config, prob_m, prob_n, prob_k)) { + return th_config; + } + } + } + + return thread_config_t{-1, -1, -1}; +} + +#define CALL_IF_MOE(N_BLOCKS, K_BLOCKS, NUM_THREADS) \ + __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ + __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ + __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ + __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS) \ + \ + __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ + __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ + __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ + __CALL_IF_MOE(1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \ + \ + __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ + __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ + __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ + __CALL_IF_MOE(2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \ + \ + __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ + __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ + __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ + __CALL_IF_MOE(3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) \ + \ + __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS) \ + __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS) \ + __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS) \ + __CALL_IF_MOE(4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS) + +void marlin_mm_moe_f16i4(const void* A, const void* B, void* C, + const void* sorted_ids, const void* topk_weights, + const void* topk_ids, const void* s, const void* g_idx, + const void* perm, void* a_tmp, void* expert_offsets, + int prob_m, int prob_n, int prob_k, void* workspace, + bool has_act_order, bool is_k_full, int num_groups, + int group_size, int num_experts, int topk, + int moe_block_size, int dev, cudaStream_t stream, + int thread_k, int thread_n, int sms, int max_par, + bool replicate_input, bool apply_weights) { + TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m, + ", ", prob_n, ", ", prob_k, "]"); + + if (sms == -1) { + cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev); + } + + // Set thread config + thread_config_t th_config; + if (thread_k != -1 && thread_n != -1) { + // User-defined config + th_config = thread_config_t{thread_k, thread_n, USER_THREADS}; + } else { + // Auto config + th_config = determine_thread_config(prob_m, prob_n, prob_k); + } + + TORCH_CHECK(is_valid_config(th_config, prob_m, prob_n, prob_k), + "Invalid thread config: thread_k = " + str(th_config.thread_k) + + ", thread_n = " + str(th_config.thread_n) + + ", num_threads = " + str(th_config.num_threads) + + " for MKN = [" + str(prob_m) + ", " + str(prob_k) + ", " + + str(prob_n) + "]"); + + int num_threads = th_config.num_threads; + thread_k = th_config.thread_k; + thread_n = th_config.thread_n; + + int thread_k_blocks = thread_k / 16; + int thread_n_blocks = thread_n / 16; + + int blocks = sms; + + TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n, + " is not divisible by thread_n = ", thread_n); + TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k, + " is not divisible by thread_k = ", thread_k); + + int group_blocks = 0; + if (has_act_order) { + if (is_k_full) { + TORCH_CHECK(group_size != -1); + group_blocks = group_size / 16; + TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k, + " is not divisible by group_blocks = ", group_blocks); + } else { + TORCH_CHECK(group_size == 0); + group_blocks = 0; + } + + } else { + if (group_size == -1) { + group_blocks = -1; + } else { + group_blocks = group_size / 16; + TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k, + " is not divisible by group_blocks = ", group_blocks); + } + } + + int max_shared_mem = 0; + cudaDeviceGetAttribute(&max_shared_mem, + cudaDevAttrMaxSharedMemoryPerBlockOptin, dev); + TORCH_CHECK(max_shared_mem > 0); + + int tot_m = prob_m; + + const int* topk_ids_ptr = (const int*)topk_ids; + int* expert_offsets_ptr = (int*)expert_offsets; + compute_expert_offsets<<<1, num_experts, 0, stream>>>( + topk_ids_ptr, expert_offsets_ptr, tot_m * topk, moe_block_size); + + bool do_permute_a = has_act_order; + + // If we have a full K, then we can run the non-act-order version of Marlin + // (since the weight rows are reordered by increasing group ids, and by + // having a full K, we have full original groups) + if (is_k_full) { + has_act_order = false; + } + + for (int expert_idx = 0; expert_idx < num_experts; ++expert_idx) { + const int4* A_ptr = (const int4*)A; + int4* a_tmp_ptr = (int4*)a_tmp; + const int4* B_ptr = (const int4*)B + (prob_n * prob_k / 32) * expert_idx; + int4* C_ptr = (int4*)C; + const float* topk_weights_ptr = (const float*)topk_weights; + const int* sorted_ids_ptr = (const int*)sorted_ids; + const int4* s_ptr = + (const int4*)s + + (((group_size == -1 || group_size == 0) ? 1 : prob_k / group_size) * + prob_n / 8) * + expert_idx; + const int* g_idx_ptr = (const int*)g_idx + prob_k * expert_idx; + const int* perm_ptr = (const int*)perm + prob_k * expert_idx; + int* locks = (int*)workspace; + + if (do_permute_a) { + // Permute A columns + int topk_rows = replicate_input ? tot_m : tot_m * topk; + int block_rows = ceildiv(topk_rows, blocks); + permute_cols_kernel<<>>( + A_ptr, perm_ptr, a_tmp_ptr, topk_rows, prob_k, block_rows); + A_ptr = a_tmp_ptr; + } + + int max_m_blocks = ceildiv(tot_m, 16); + for (int m_block = 0; m_block < max_m_blocks; m_block += 16) { + // Define kernel configurations + + // make it max possible value + int thread_m_blocks = 4; + + if (false) { + } + CALL_IF_MOE(16, 4, 256) + CALL_IF_MOE(8, 8, 256) + CALL_IF_MOE(8, 4, 128) + CALL_IF_MOE(4, 8, 128) + else { + TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " + + str(prob_n) + ", " + str(prob_k) + "]" + + ", has_act_order = " + str(has_act_order) + + ", num_groups = " + str(num_groups) + + ", group_size = " + str(group_size) + + ", thread_m_blocks = " + str(thread_m_blocks) + + ", thread_n_blocks = " + str(thread_n_blocks) + + ", thread_k_blocks = " + str(thread_k_blocks)); + } + } + } +} + +} // namespace marlin_moe + +torch::Tensor marlin_gemm_moe( + const torch::Tensor& a, const torch::Tensor& b_q_weights, + const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights, + const torch::Tensor& topk_ids, const torch::Tensor& b_scales, + const torch::Tensor& g_idx, const torch::Tensor& perm, + torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k, + bool is_k_full, int64_t num_experts, int64_t topk, int64_t moe_block_size, + bool replicate_input, bool apply_weights) { + int max_par = 4; + + int dev = a.get_device(); + + auto options_dtype = + torch::TensorOptions().dtype(a.dtype()).device(a.device()); + auto options_int = + torch::TensorOptions().dtype(torch::kInt).device(a.device()); + torch::Tensor c = torch::zeros({size_m, topk, size_n}, options_dtype); + torch::Tensor a_tmp = + replicate_input ? torch::zeros({size_m, size_k}, options_dtype) + : torch::zeros({size_m, topk, size_k}, options_dtype); + torch::Tensor expert_offsets = torch::empty({num_experts + 1}, options_int); + + // thread_k: `k` size of a thread_tile in `weights` (can usually be left as + // auto -1) + int thread_k = -1; + // thread_n: `n` size of a thread_tile in `weights` (can usually be left as + // auto -1) + int thread_n = -1; + // sms: number of SMs to use for the kernel (can usually be left as auto -1) + int sms = -1; + + // Detect groupsize and act_order + int num_groups = -1; + int group_size = -1; + bool has_act_order = g_idx.size(1) != 0; + + int b_rank = b_scales.sizes().size(); + TORCH_CHECK(b_rank == 3, "b_scales rank = ", b_rank, " is not 3"); + TORCH_CHECK(b_scales.size(2) == size_n, "b_scales dim 2 = ", b_scales.size(2), + " is not size_n = ", size_n); + num_groups = b_scales.size(1); + + if (has_act_order) { + if (is_k_full) { + TORCH_CHECK(num_groups > 1, "For act_order, num_groups must be > 1"); + TORCH_CHECK(size_k % num_groups == 0, "size_k = ", size_k, + ", is not divisible by num_groups = ", num_groups); + group_size = size_k / num_groups; + } else { + group_size = 0; + } + + } else { + if (num_groups > 1) { + TORCH_CHECK( + size_k % num_groups == 0, "size_k = ", size_k, + ", is not divisible by b_scales.size(0) = ", b_scales.size(0)); + group_size = size_k / num_groups; + } else { + group_size = -1; + } + } + + marlin_moe::marlin_mm_moe_f16i4( + a.data_ptr(), b_q_weights.data_ptr(), c.data_ptr(), sorted_ids.data_ptr(), + topk_weights.data_ptr(), topk_ids.data_ptr(), b_scales.data_ptr(), + g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr(), + expert_offsets.data_ptr(), size_m, size_n, size_k, workspace.data_ptr(), + has_act_order, is_k_full, num_groups, group_size, num_experts, topk, + moe_block_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k, + thread_n, sms, max_par, replicate_input, apply_weights); + return c; +} \ No newline at end of file diff --git a/csrc/moe/marlin_moe_ops.h b/csrc/moe/marlin_moe_ops.h new file mode 100644 index 0000000000000..01ba8ff69850d --- /dev/null +++ b/csrc/moe/marlin_moe_ops.h @@ -0,0 +1,12 @@ +#pragma once + +#include + +torch::Tensor marlin_gemm_moe( + const torch::Tensor& a, const torch::Tensor& b_q_weights, + const torch::Tensor& sorted_ids, const torch::Tensor& topk_weights, + const torch::Tensor& topk_ids, const torch::Tensor& b_scales, + const torch::Tensor& g_idx, const torch::Tensor& perm, + torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k, + bool is_k_full, int64_t num_experts, int64_t topk, int64_t moe_block_size, + bool replicate_input, bool apply_weights); \ No newline at end of file diff --git a/csrc/moe/torch_bindings.cpp b/csrc/moe/torch_bindings.cpp index 86e42af44df15..d4d43e2c601b5 100644 --- a/csrc/moe/torch_bindings.cpp +++ b/csrc/moe/torch_bindings.cpp @@ -1,5 +1,6 @@ #include "core/registration.h" #include "moe_ops.h" +#include "marlin_moe_ops.h" TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) { // Apply topk softmax to the gating outputs. @@ -7,6 +8,17 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) { "topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor! " "token_expert_indices, Tensor gating_output) -> ()"); m.impl("topk_softmax", torch::kCUDA, &topk_softmax); + +#ifndef USE_ROCM + m.def( + "marlin_gemm_moe(Tensor! a, Tensor! b_q_weights, Tensor! sorted_ids, " + "Tensor! topk_weights, Tensor! topk_ids, Tensor! b_scales, Tensor! " + "g_idx, Tensor! perm, Tensor! workspace, int size_m, int size_n, int " + "size_k, bool is_k_full, int num_experts, int topk, int moe_block_size, " + "bool replicate_input, bool apply_weights) -> Tensor"); + + m.impl("marlin_gemm_moe", torch::kCUDA, &marlin_gemm_moe); +#endif } REGISTER_EXTENSION(TORCH_EXTENSION_NAME) diff --git a/tests/quantization/test_compressed_tensors.py b/tests/quantization/test_compressed_tensors.py index 2ea340779b819..7dd20636c892f 100644 --- a/tests/quantization/test_compressed_tensors.py +++ b/tests/quantization/test_compressed_tensors.py @@ -160,4 +160,4 @@ def test_compressed_tensors_kv_cache(vllm_runner): model_path = "nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme" with vllm_runner(model_path, kv_cache_dtype="fp8") as llm: output = llm.generate_greedy("Hello world!", max_tokens=20) - assert output + assert output \ No newline at end of file diff --git a/tests/weight_loading/models.txt b/tests/weight_loading/models.txt index 70d6ffc70367e..cbe30305c14f6 100644 --- a/tests/weight_loading/models.txt +++ b/tests/weight_loading/models.txt @@ -13,6 +13,8 @@ compressed-tensors, nm-testing/tinyllama-oneshot-w8a16-per-channel, main compressed-tensors, nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test, main compressed-tensors, nm-testing/Phi-3-mini-128k-instruct-FP8, main compressed-tensors, neuralmagic/Phi-3-medium-128k-instruct-quantized.w4a16, main +compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W4A16-quantized, main +compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W4A16-channel-quantized, main awq, casperhansen/mixtral-instruct-awq, main awq_marlin, casperhansen/mixtral-instruct-awq, main fp8, neuralmagic/Meta-Llama-3-8B-Instruct-FP8-KV, main diff --git a/vllm/_custom_ops.py b/vllm/_custom_ops.py index b89a90ef0f70c..ae90af563c0cf 100644 --- a/vllm/_custom_ops.py +++ b/vllm/_custom_ops.py @@ -300,6 +300,20 @@ def awq_marlin_repack(b_q_weight: torch.Tensor, size_k: int, size_n: int, return torch.ops._C.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits) +def gptq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor, + size_k: int, size_n: int, + num_bits: int) -> torch.Tensor: + num_experts = b_q_weight.shape[0] + assert size_k % 16 == 0 + output = torch.empty((num_experts, size_k // 16, size_n * 2), + device=b_q_weight.device, + dtype=b_q_weight.dtype) + for e in range(num_experts): + output[e] = torch.ops._C.gptq_marlin_repack(b_q_weight[e], perm[e], + size_k, size_n, num_bits) + return output + + def gptq_marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor, b_scales: torch.Tensor, diff --git a/vllm/model_executor/layers/fused_moe/__init__.py b/vllm/model_executor/layers/fused_moe/__init__.py index 3e0767c7d2665..fd6f41b90042e 100644 --- a/vllm/model_executor/layers/fused_moe/__init__.py +++ b/vllm/model_executor/layers/fused_moe/__init__.py @@ -1,19 +1,17 @@ -from vllm.model_executor.layers.fused_moe.layer import (FusedMoE, - FusedMoEMethodBase) +from vllm.model_executor.layers.fused_moe.layer import ( + FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported) from vllm.triton_utils import HAS_TRITON -__all__ = [ - "FusedMoE", - "FusedMoEMethodBase", -] +__all__ = ["FusedMoE", "FusedMoEMethodBase", "FusedMoeWeightScaleSupported"] if HAS_TRITON: from vllm.model_executor.layers.fused_moe.fused_moe import ( - fused_experts, fused_moe, fused_topk, get_config_file_name, - grouped_topk) + fused_experts, fused_marlin_moe, fused_moe, fused_topk, + get_config_file_name, grouped_topk) __all__ += [ + "fused_marlin_moe", "fused_moe", "fused_topk", "fused_experts", diff --git a/vllm/model_executor/layers/fused_moe/fused_moe.py b/vllm/model_executor/layers/fused_moe/fused_moe.py index bcf25d2631042..d2b152320e11e 100644 --- a/vllm/model_executor/layers/fused_moe/fused_moe.py +++ b/vllm/model_executor/layers/fused_moe/fused_moe.py @@ -323,21 +323,16 @@ def get_moe_configs(E: int, N: int, return None -def get_default_config( - M: int, - E: int, - N: int, - K: int, - topk: int, - dtype: Optional[str], -) -> Dict[str, int]: +def get_default_config(M: int, E: int, N: int, K: int, topk: int, + dtype: Optional[str], + is_marlin: bool) -> Dict[str, int]: config = { 'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8 } - if M <= E: + if M <= E or (is_marlin and M <= 32): config = { 'BLOCK_SIZE_M': 16, 'BLOCK_SIZE_N': 32, @@ -347,14 +342,14 @@ def get_default_config( return config -def try_get_optimal_moe_config( - w1_shape: Tuple[int, ...], - w2_shape: Tuple[int, ...], - top_k: int, - dtype: Optional[str], - M: int, - override_config: Optional[Dict[str, Any]] = None, -): +def try_get_optimal_moe_config(w1_shape: Tuple[int, ...], + w2_shape: Tuple[int, ...], + top_k: int, + dtype: Optional[str], + M: int, + override_config: Optional[Dict[str, + Any]] = None, + is_marlin: bool = False): if override_config: config = override_config else: @@ -368,7 +363,8 @@ def try_get_optimal_moe_config( config = configs[min(configs.keys(), key=lambda x: abs(x - M))] else: # Else use the default config - config = get_default_config(M, E, N, w1_shape[2], top_k, dtype) + config = get_default_config(M, E, N, w1_shape[2], top_k, dtype, + is_marlin) return config @@ -441,6 +437,108 @@ def grouped_topk(hidden_states: torch.Tensor, return topk_weights, topk_ids +def fused_marlin_moe(hidden_states: torch.Tensor, + w1: torch.Tensor, + w2: torch.Tensor, + gating_output: torch.Tensor, + g_idx1: torch.Tensor, + g_idx2: torch.Tensor, + rand_perm1: torch.Tensor, + rand_perm2: torch.Tensor, + topk: int, + renormalize: bool, + override_config: Optional[Dict[str, Any]] = None, + use_fp8: bool = False, + w1_scale: Optional[torch.Tensor] = None, + w2_scale: Optional[torch.Tensor] = None) -> torch.Tensor: + """ + This function computes a Mixture of Experts (MoE) layer using two sets of + weights, w1 and w2, and top-k gating mechanism. + Parameters: + - hidden_states (torch.Tensor): The input tensor to the MoE layer. + - w1 (torch.Tensor): The first set of expert weights. + - w2 (torch.Tensor): The second set of expert weights. + - gating_output (torch.Tensor): The output of the gating operation + (before softmax). + - topk (int): The number of top-k experts to select. + - renormalize (bool): If True, renormalize the top-k weights to sum to 1. + - inplace (bool): If True, perform the operation in-place. + Defaults to False. + - override_config (Optional[Dict[str, Any]]): Optional override + for the kernel configuration. + - use_fp8 (bool): If True, use fp8 arithmetic to compute the inner + products for w1 and w2. Defaults to False. + - w1_scale (Optional[torch.Tensor]): Optional scale to be used for + w1. + - w2_scale (Optional[torch.Tensor]): Optional scale to be used for + w2. + Returns: + - torch.Tensor: The output tensor after applying the MoE layer. + """ + # Check constraints. + assert hidden_states.shape[0] == gating_output.shape[0], ( + "Number of tokens mismatch") + assert hidden_states.shape[ + 1] == w1.shape[1] * 16, "Hidden size mismatch w1" + assert hidden_states.shape[ + 1] == w2.shape[2] // 2, "Hidden size mismatch w2" + assert gating_output.shape[1] == w1.shape[0], "Number of experts mismatch" + assert hidden_states.is_contiguous(), "Hidden_states must be contiguous" + assert w1.is_contiguous(), "Expert weights1 must be contiguous" + assert w2.is_contiguous(), "Expert weights2 must be contiguous" + assert hidden_states.dtype in [ + torch.float32, torch.float16, torch.bfloat16 + ] + + #TODO fp8 is not implemented yet + assert not use_fp8 + + M, K = hidden_states.shape + E = w1.shape[0] + N = w2.shape[1] * 16 + + topk_weights, topk_ids = fused_topk(hidden_states, gating_output, topk, + renormalize) + + get_config_func = functools.partial(try_get_optimal_moe_config, + w1.shape, + w2.shape, + topk_ids.shape[1], + "float8" if use_fp8 else None, + override_config=override_config, + is_marlin=True) + config = get_config_func(M) + + block_size_m = config['BLOCK_SIZE_M'] + + sorted_token_ids, _, _ = moe_align_block_size(topk_ids, block_size_m, E) + + max_workspace_size = ((M + 255) // 256) * (max(2 * N, K) // 64) * 16 + workspace = torch.zeros(max_workspace_size, + dtype=torch.int, + device="cuda", + requires_grad=False) + + intermediate_cache2 = torch.empty((M * topk_ids.shape[1], N), + device=hidden_states.device, + dtype=hidden_states.dtype) + + intermediate_cache1 = torch.ops._moe_C.marlin_gemm_moe( + hidden_states, w1, sorted_token_ids, topk_weights, topk_ids, w1_scale, + g_idx1, rand_perm1, workspace, M, 2 * N, K, True, E, topk, + block_size_m, True, False) + + ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, 2 * N)) + + intermediate_cache3 = torch.ops._moe_C.marlin_gemm_moe( + intermediate_cache2, w2, sorted_token_ids, topk_weights, topk_ids, + w2_scale, g_idx2, rand_perm2, workspace, M, K, N, True, E, topk, + block_size_m, False, True) + + return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), + dim=1) + + def get_config_dtype_str(dtype: torch.dtype, use_int8_w8a16: Optional[bool] = False, use_fp8_w8a8: Optional[bool] = False): diff --git a/vllm/model_executor/layers/fused_moe/layer.py b/vllm/model_executor/layers/fused_moe/layer.py index 4e29ab701b937..61ebef5e11f43 100644 --- a/vllm/model_executor/layers/fused_moe/layer.py +++ b/vllm/model_executor/layers/fused_moe/layer.py @@ -1,4 +1,5 @@ from abc import abstractmethod +from enum import Enum from typing import List, Optional, Tuple import torch @@ -15,6 +16,12 @@ logger = init_logger(__name__) +class FusedMoeWeightScaleSupported(Enum): + TENSOR = "tensor" + CHANNEL = "channel" + GROUP = "group" + + class FusedMoEMethodBase(QuantizeMethodBase): @abstractmethod @@ -199,55 +206,182 @@ def __init__( params_dtype=params_dtype, weight_loader=self.weight_loader) + def _load_per_tensor_weight_scale(self, shard_id: str, + param: torch.nn.Parameter, + loaded_weight: torch.Tensor, + expert_id: int): + param_data = param.data + # for per tensor weight quantization + if shard_id in ("w1", "w3"): + # We have to keep the weight scales of w1 and w3 because + # we need to re-quantize w1/w3 weights after weight loading. + idx = 0 if shard_id == "w1" else 1 + param_data[expert_id][idx] = loaded_weight + # If we are in the row parallel case (down_proj) + elif shard_id == "w2": + param_data[expert_id] = loaded_weight + + def _load_model_weight_or_group_weight_scale(self, shard_dim: int, + expert_data: torch.Tensor, + shard_id: str, + loaded_weight: torch.tensor, + tp_rank: int): + # Load grouped weight scales for group quantization + # or model weights + if shard_id == "w2": + self._load_w2(shard_id=shard_id, + shard_dim=shard_dim, + loaded_weight=loaded_weight, + expert_data=expert_data, + tp_rank=tp_rank) + elif shard_id in ("w1", "w3"): + self._load_w13(shard_id=shard_id, + shard_dim=shard_dim, + loaded_weight=loaded_weight, + expert_data=expert_data, + tp_rank=tp_rank) + + def _load_per_channel_weight_scale(self, expert_data: torch.Tensor, + shard_dim: int, shard_id: str, + loaded_weight: torch.tensor, + tp_rank: int): + # for per channel weight quantization + if shard_id == "w2": + expert_data.copy_(loaded_weight) + elif shard_id in ("w1", "w3"): + self._load_w13(shard_id=shard_id, + shard_dim=shard_dim, + loaded_weight=loaded_weight, + expert_data=expert_data, + tp_rank=tp_rank) + + def _load_w13(self, expert_data: torch.Tensor, shard_dim: int, + shard_id: str, loaded_weight: torch.tensor, tp_rank: int): + + # Index the loaded weight for tp sharding. + # gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim + shard_size = expert_data.shape[shard_dim] // 2 + loaded_weight = loaded_weight.narrow(shard_dim, shard_size * tp_rank, + shard_size) + # Narrow parameter and load. + # w1, gate_proj: Load into first logical weight of w13. + if shard_id == "w1": + expert_data = expert_data.narrow(shard_dim, 0, shard_size) + # w3, up_proj: Load into second logical weight of w13. + else: + assert shard_id == "w3" + expert_data = expert_data.narrow(shard_dim, shard_size, shard_size) + expert_data.copy_(loaded_weight) + + def _load_w2(self, expert_data: torch.Tensor, shard_dim: int, + shard_id: str, loaded_weight: torch.tensor, tp_rank: int): + + # Index the loaded weight for tp sharding. + # down_proj: "RowParallel" so tp sharding on input_dim + # Narrow parameter and load. + shard_size = expert_data.shape[shard_dim] + loaded_weight = loaded_weight.narrow(shard_dim, shard_size * tp_rank, + shard_size) + # w2, down_proj: Load into only logical weight of w2. + expert_data.copy_(loaded_weight) + + def _load_single_value(self, param: torch.nn.Parameter, + loaded_weight: torch.Tensor, expert_id: int): + param_data = param.data + + # Input scales can be loaded directly and should be equal. + param_data[expert_id] = loaded_weight + def weight_loader(self, param: torch.nn.Parameter, loaded_weight: torch.Tensor, weight_name: str, shard_id: str, expert_id: int) -> None: + if shard_id not in ("w1", "w2", "w3"): raise ValueError(f"shard_id must be ['w1','w2','w3'] but " f"got {shard_id}.") - # Special case for fp8 scales. - if getattr(param, "is_fp8_scale", False): - self._load_fp8_scale(param.data, loaded_weight, weight_name, - shard_id, expert_id) - return + WEIGHT_SCALE_SUPPORTED = [ + e.value for e in FusedMoeWeightScaleSupported + ] + # Fetch the dim to shard the parameter/loaded weight + # based on the shard id. This will be whatever + # dimension intermediate_size is used. + SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0} expert_data = param.data[expert_id] tp_rank = get_tensor_model_parallel_rank() - # If transposed, weight is saved as [input_dim, output_dim] - # Otherwise, weight is saved as [output_dim, input_dim] - # Default is not transposed/input dim is dim 1 - input_dim = getattr(param, "input_dim", 1) - output_dim = getattr(param, "output_dim", 0) + # is_transposed: whether or not the parameter is transposed on disk + # If transposed, the loaded weight will be transposed and the dim + # to shard the loaded weight will be flipped. + is_transposed = getattr(param, "is_transposed", False) + shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id] + if is_transposed: + loaded_weight = loaded_weight.t().contiguous() + shard_dim = ~shard_dim + + # Case weight_scales + if "weight_scale" in weight_name: + # load the weight scaling based on the quantization scheme + # supported weight scales can be found in + # FusedMoeWeightScaleSupported + # TODO @dsikka: once hardened, refactor to use vLLM Parameters + # specific to each case + quant_method = getattr(param, "quant_method", None) + if quant_method == FusedMoeWeightScaleSupported.CHANNEL.value: + self._load_per_channel_weight_scale( + shard_id=shard_id, + shard_dim=shard_dim, + loaded_weight=loaded_weight, + expert_data=expert_data, + tp_rank=tp_rank) + elif quant_method == FusedMoeWeightScaleSupported.GROUP.value: + self._load_model_weight_or_group_weight_scale( + shard_id=shard_id, + shard_dim=shard_dim, + loaded_weight=loaded_weight, + expert_data=expert_data, + tp_rank=tp_rank) + elif quant_method == FusedMoeWeightScaleSupported.TENSOR.value: + self._load_per_tensor_weight_scale(shard_id=shard_id, + param=param, + loaded_weight=loaded_weight, + expert_id=expert_id) + else: + raise ValueError( + f"quant method must be one of {WEIGHT_SCALE_SUPPORTED}") + return - # Index the loaded weight for tp sharding. - # down_proj: "RowParallel" so tp sharding on input_dim - if shard_id == "w2": - shard_dim = input_dim - shard_size = expert_data.shape[shard_dim] - # gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim - elif shard_id in ("w1", "w3"): - shard_dim = output_dim - shard_size = expert_data.shape[output_dim] // 2 - offset = shard_size * tp_rank - loaded_weight = loaded_weight.narrow(shard_dim, offset, shard_size) + if "weight_shape" in weight_name: + self._load_single_value(param=param, + loaded_weight=loaded_weight, + expert_id=expert_id) + return - # Narrow parameter and load. - # w1, gate_proj: Load into first logical weight of w13. - if shard_id == "w1": - expert_data = expert_data.narrow(shard_dim, 0, shard_size) - expert_data.copy_(loaded_weight) - # w3, up_proj: Load into second logical weight of w13. - elif shard_id == "w3": - expert_data = expert_data.narrow(shard_dim, shard_size, shard_size) - expert_data.copy_(loaded_weight) - # w2, down_proj: Load into only logical weight of w2. - elif shard_id == "w2": - expert_data.copy_(loaded_weight) - else: - raise ValueError( - f"Expected shard_id w1,w2 or w3 but got {shard_id}") + # Case input scale + if "input_scale" in weight_name: + # Note: input_scale loading is only supported for fp8 + if param.data[expert_id] != 1 and (param.data[expert_id] - + loaded_weight).abs() > 1e-5: + raise ValueError( + "input_scales of w1 and w3 of a layer " + f"must be equal. But got {param.data[expert_id]} " + f"vs. {loaded_weight}") + + self._load_single_value(param=param, + loaded_weight=loaded_weight, + expert_id=expert_id) + return + + # Case model weights + if "weight" in weight_name: + self._load_model_weight_or_group_weight_scale( + shard_id=shard_id, + shard_dim=shard_dim, + loaded_weight=loaded_weight, + expert_data=expert_data, + tp_rank=tp_rank) + return @staticmethod def select_experts(hidden_states: torch.Tensor, @@ -342,4 +476,4 @@ def _load_fp8_scale(self, param: torch.nn.Parameter, param_data[expert_id][idx] = loaded_weight # If we are in the row parallel case (down_proj) else: - param_data[expert_id] = loaded_weight + param_data[expert_id] = loaded_weight \ No newline at end of file diff --git a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py index f0e0b9db80884..0768b37044aac 100644 --- a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +++ b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py @@ -3,10 +3,13 @@ import torch from pydantic import BaseModel +from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase, UnquantizedLinearMethod) from vllm.model_executor.layers.quantization.base_config import ( # noqa: E501 QuantizationConfig, QuantizeMethodBase) +from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors_moe import ( # noqa: E501 + CompressedTensorsMoEMethod) from vllm.model_executor.layers.quantization.compressed_tensors.schemes import ( W4A16SPARSE24_SUPPORTED_BITS, WNA16_SUPPORTED_BITS, CompressedTensorsScheme, CompressedTensorsW4A16Sparse24, @@ -69,6 +72,8 @@ def get_quant_method( return CompressedTensorsLinearMethod(self) if isinstance(layer, Attention): return CompressedTensorsKVCacheMethod(self) + if isinstance(layer, FusedMoE): + return CompressedTensorsMoEMethod(self) return None @classmethod diff --git a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py new file mode 100644 index 0000000000000..0e0ab9ce9169f --- /dev/null +++ b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py @@ -0,0 +1,283 @@ +import enum +from enum import Enum +from typing import List, Optional + +import torch + +from vllm import _custom_ops as ops +from vllm.model_executor.layers.fused_moe import FusedMoEMethodBase +from vllm.model_executor.layers.quantization.compressed_tensors.schemes import ( + WNA16_SUPPORTED_BITS) +from vllm.model_executor.layers.quantization.compressed_tensors.utils import ( + CompressionFormat) +from vllm.model_executor.utils import set_weight_attrs + + +class GPTQMarlinState(Enum): + REPACK = enum.auto() + READY = enum.auto() + + +__all__ = ["CompressedTensorsMoEMethod"] + + +class CompressedTensorsMoEMethod(FusedMoEMethodBase): + + def __init__( + self, + quant_config: "CompressedTensorsConfig" # type: ignore # noqa E501 + ): + self.quant_config = quant_config + # TODO: @dsikka: refactor this to use schemes as other kernels + # are supported + check if the layer is being ignored. + config = self.quant_config.target_scheme_map["Linear"].get("weights") + self.num_bits = config.num_bits + self.packed_factor = 32 // config.num_bits + self.strategy = config.strategy.value + self.group_size = config.group_size + assert config.symmetric, ( + "Only symmetric quantization is supported for MoE") + + if not (self.quant_config.quant_format + == CompressionFormat.pack_quantized.value + and self.num_bits in WNA16_SUPPORTED_BITS): + raise ValueError("For Fused MoE layers, only ", + f"{CompressionFormat.pack_quantized.value} ", + "is supported for the following bits: ", + f"{WNA16_SUPPORTED_BITS}") + + def create_weights(self, layer: torch.nn.Module, num_experts: int, + hidden_size: int, intermediate_size: int, + params_dtype: torch.dtype, **extra_weight_attrs): + + # Will transpose the loaded weight along the + # intermediate and hidden dim sizes. Will + # shard for TP along the transposed dims + extra_weight_attrs.update({ + "is_transposed": True, + "quant_method": self.strategy + }) + w13_weight = torch.nn.Parameter(torch.empty(num_experts, + hidden_size // + self.packed_factor, + 2 * intermediate_size, + dtype=torch.int32), + requires_grad=False) + layer.register_parameter("w13_weight_packed", w13_weight) + set_weight_attrs(w13_weight, extra_weight_attrs) + + w2_weight = torch.nn.Parameter(torch.empty(num_experts, + intermediate_size // + self.packed_factor, + hidden_size, + dtype=torch.int32), + requires_grad=False) + layer.register_parameter("w2_weight_packed", w2_weight) + set_weight_attrs(w2_weight, extra_weight_attrs) + + if self.strategy == "channel": + num_groups_w2 = num_groups_w13 = 1 + self.group_size = -1 + else: + num_groups_w2 = intermediate_size // self.group_size + num_groups_w13 = hidden_size // self.group_size + + w13_scale = torch.nn.Parameter(torch.ones(num_experts, + num_groups_w13, + 2 * intermediate_size, + dtype=params_dtype), + requires_grad=False) + layer.register_parameter("w13_weight_scale", w13_scale) + set_weight_attrs(w13_scale, extra_weight_attrs) + + w2_scale = torch.nn.Parameter(torch.ones(num_experts, + num_groups_w2, + hidden_size, + dtype=params_dtype), + requires_grad=False) + layer.register_parameter("w2_weight_scale", w2_scale) + set_weight_attrs(w2_scale, extra_weight_attrs) + + w2_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2), + requires_grad=False) + layer.register_parameter("w2_weight_shape", w2_weight_shape) + set_weight_attrs(w2_weight_shape, extra_weight_attrs) + w13_weight_shape = torch.nn.Parameter(torch.empty(num_experts, 2), + requires_grad=False) + + layer.register_parameter("w13_weight_shape", w13_weight_shape) + set_weight_attrs(w13_weight_shape, extra_weight_attrs) + + w13_g_idx = torch.nn.Parameter( + torch.empty( + num_experts, + hidden_size, + dtype=torch.int32, + ), + requires_grad=False, + ) + layer.register_parameter("w13_g_idx", w13_g_idx) + set_weight_attrs(w13_g_idx, extra_weight_attrs) + + w2_g_idx = torch.nn.Parameter( + torch.empty( + num_experts, + intermediate_size, + dtype=torch.int32, + ), + requires_grad=False, + ) + layer.register_parameter("w2_g_idx", w2_g_idx) + set_weight_attrs(w2_g_idx, extra_weight_attrs) + + w13_g_idx_sort_indices = torch.nn.Parameter( + torch.empty( + num_experts, + hidden_size, + dtype=torch.int32, + ), + requires_grad=False, + ) + layer.register_parameter("w13_g_idx_sort_indices", + w13_g_idx_sort_indices) + set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs) + + w2_g_idx_sort_indices = torch.nn.Parameter( + torch.empty( + num_experts, + intermediate_size, + dtype=torch.int32, + ), + requires_grad=False, + ) + layer.register_parameter("w2_g_idx_sort_indices", + w2_g_idx_sort_indices) + set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs) + + layer.a13_scale = None + layer.a2_scale = None + layer.marlin_state = GPTQMarlinState.REPACK + + def process_weights_after_loading(self, layer: torch.nn.Module) -> None: + + def replace_tensor(name, new_t): + # It is important to use resize_() here since it ensures + # the same buffer is reused + getattr(layer, name).resize_(new_t.shape) + getattr(layer, name).copy_(new_t) + del new_t + + def get_scale_perms(num_bits: int): + scale_perm: List[int] = [] + for i in range(8): + scale_perm.extend([i + 8 * j for j in range(8)]) + scale_perm_single: List[int] = [] + for i in range(4): + scale_perm_single.extend( + [2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]]) + return scale_perm, scale_perm_single + + def marlin_permute_scales(s: torch.Tensor, size_k: int, size_n: int, + group_size: int, num_bits: int): + scale_perm, scale_perm_single = get_scale_perms(num_bits) + if group_size < size_k and group_size != -1: + s = s.reshape((-1, len(scale_perm)))[:, scale_perm] + else: + s = s.reshape((-1, len(scale_perm_single)))[:, + scale_perm_single] + s = s.reshape((-1, size_n)).contiguous() + return s + + def marlin_moe_permute_scales(s: torch.Tensor, size_k: int, + size_n: int, group_size: int, + num_bits: int): + num_experts = s.shape[0] + output = torch.empty((num_experts, s.shape[1], s.shape[2]), + device=s.device, + dtype=s.dtype) + for e in range(num_experts): + output[e] = marlin_permute_scales(s[e], size_k, size_n, + group_size, num_bits) + return output + + size_k2 = layer.w2_weight_packed.shape[2] + size_k13 = layer.w13_weight_packed.shape[2] + + num_experts = layer.w13_g_idx.shape[0] + device = layer.w13_g_idx.device + layer.w13_g_idx = torch.nn.Parameter( + torch.empty((num_experts, 0), dtype=torch.int32, device=device), + requires_grad=False, + ) + layer.w2_g_idx = torch.nn.Parameter( + torch.empty((num_experts, 0), dtype=torch.int32, device=device), + requires_grad=False, + ) + layer.w13_g_idx_sort_indices = torch.nn.Parameter( + torch.empty((num_experts, 0), dtype=torch.int32, device=device), + requires_grad=False, + ) + layer.w2_g_idx_sort_indices = torch.nn.Parameter( + torch.empty((num_experts, 0), dtype=torch.int32, device=device), + requires_grad=False, + ) + + marlin_w13_qweight = ops.gptq_marlin_moe_repack( + layer.w13_weight_packed, + layer.w13_g_idx_sort_indices, + layer.w13_weight_packed.shape[1] * self.packed_factor, + layer.w13_weight_packed.shape[2], + self.num_bits, + ) + replace_tensor("w13_weight_packed", marlin_w13_qweight) + marlin_w2_qweight = ops.gptq_marlin_moe_repack( + layer.w2_weight_packed, + layer.w2_g_idx_sort_indices, + layer.w2_weight_packed.shape[1] * self.packed_factor, + layer.w2_weight_packed.shape[2], + self.num_bits, + ) + replace_tensor("w2_weight_packed", marlin_w2_qweight) + # Repack scales + marlin_w13_scales = marlin_moe_permute_scales( + layer.w13_weight_scale, + size_k13, + layer.w13_weight_scale.shape[2], + self.group_size, + self.num_bits, + ) + replace_tensor("w13_weight_scale", marlin_w13_scales) + marlin_w2_scales = marlin_moe_permute_scales( + layer.w2_weight_scale, + layer.w2_weight_scale.shape[1] * self.packed_factor, + size_k2, + self.group_size, + self.num_bits, + ) + replace_tensor("w2_weight_scale", marlin_w2_scales) + + def apply(self, + layer: torch.nn.Module, + x: torch.Tensor, + router_logits: torch.Tensor, + top_k: int, + renormalize: bool = True, + use_grouped_topk: bool = False, + num_expert_group: Optional[int] = None, + topk_group: Optional[int] = None) -> torch.Tensor: + + from vllm.model_executor.layers.fused_moe.fused_moe import ( + fused_marlin_moe) + + return fused_marlin_moe(x, + layer.w13_weight_packed, + layer.w2_weight_packed, + router_logits, + layer.w13_g_idx, + layer.w2_g_idx, + layer.w13_g_idx_sort_indices, + layer.w2_g_idx_sort_indices, + top_k, + renormalize=renormalize, + w1_scale=layer.w13_weight_scale, + w2_scale=layer.w2_weight_scale) diff --git a/vllm/model_executor/layers/quantization/fp8.py b/vllm/model_executor/layers/quantization/fp8.py index b10988b992ae1..1817dbcb023a7 100644 --- a/vllm/model_executor/layers/quantization/fp8.py +++ b/vllm/model_executor/layers/quantization/fp8.py @@ -7,7 +7,8 @@ import vllm.envs as envs from vllm import _custom_ops as ops from vllm.logger import init_logger -from vllm.model_executor.layers.fused_moe import FusedMoE, FusedMoEMethodBase +from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEMethodBase, + FusedMoeWeightScaleSupported) from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase, UnquantizedLinearMethod) from vllm.model_executor.layers.quantization.base_config import ( @@ -332,19 +333,16 @@ def create_weights(self, layer: Module, num_experts: int, hidden_size: int, dtype=torch.float32), requires_grad=False) layer.register_parameter("w2_weight_scale", w2_weight_scale) - + # Add the quantization method used (per tensor/grouped/channel) + # to ensure the weight scales are loaded in properly + extra_weight_attrs.update( + {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}) # If loading fp8 checkpoint, pass the weight loaders. # If loading an fp16 checkpoint, do not (we will quantize in # process_weights_after_loading() if self.quant_config.is_checkpoint_fp8_serialized: - set_weight_attrs(w13_weight_scale, { - "is_fp8_scale": True, - **extra_weight_attrs - }) - set_weight_attrs(w2_weight_scale, { - "is_fp8_scale": True, - **extra_weight_attrs - }) + set_weight_attrs(w13_weight_scale, extra_weight_attrs) + set_weight_attrs(w2_weight_scale, extra_weight_attrs) # INPUT_SCALES if self.quant_config.activation_scheme == "static": @@ -357,19 +355,14 @@ def create_weights(self, layer: Module, num_experts: int, hidden_size: int, num_experts, dtype=torch.float32), requires_grad=False) layer.register_parameter("w13_input_scale", w13_input_scale) - set_weight_attrs(w13_input_scale, { - "is_fp8_scale": True, - **extra_weight_attrs - }) + set_weight_attrs(w13_input_scale, extra_weight_attrs) w2_input_scale = torch.nn.Parameter(torch.ones( num_experts, dtype=torch.float32), requires_grad=False) layer.register_parameter("w2_input_scale", w2_input_scale) - set_weight_attrs(w2_input_scale, { - "is_fp8_scale": True, - **extra_weight_attrs - }) + set_weight_attrs(w2_input_scale, extra_weight_attrs) + else: layer.w13_input_scale = None layer.w2_input_scale = None diff --git a/vllm/model_executor/model_loader/utils.py b/vllm/model_executor/model_loader/utils.py index 331b859d2adec..4bb943ab3afe4 100644 --- a/vllm/model_executor/model_loader/utils.py +++ b/vllm/model_executor/model_loader/utils.py @@ -23,11 +23,11 @@ def get_model_architecture( architectures = getattr(model_config.hf_config, "architectures", []) # Special handling for quantized Mixtral. # FIXME(woosuk): This is a temporary hack. + mixtral_supported = ["fp8", "compressed-tensors"] if (model_config.quantization is not None - and model_config.quantization != "fp8" + and model_config.quantization not in mixtral_supported and "MixtralForCausalLM" in architectures): architectures = ["QuantMixtralForCausalLM"] - return ModelRegistry.resolve_model_cls(architectures) diff --git a/vllm/model_executor/models/jamba.py b/vllm/model_executor/models/jamba.py index b82eb14fb5f23..caeda4e42d8a0 100644 --- a/vllm/model_executor/models/jamba.py +++ b/vllm/model_executor/models/jamba.py @@ -920,7 +920,7 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): weight_loader = param.weight_loader weight_loader(param, loaded_weight, - weight_name, + name, shard_id=shard_id, expert_id=expert_id) break diff --git a/vllm/model_executor/models/mixtral.py b/vllm/model_executor/models/mixtral.py index 34f581ac78582..413783ba4b259 100644 --- a/vllm/model_executor/models/mixtral.py +++ b/vllm/model_executor/models/mixtral.py @@ -73,6 +73,7 @@ def __init__(self, self.hidden_size = hidden_size # Gate always runs at half / full precision for now. + self.gate = ReplicatedLinear(hidden_size, num_experts, bias=False,