-
-
Notifications
You must be signed in to change notification settings - Fork 10.3k
Closed as not planned
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity
Description
Your current environment
PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.1
Libc version: glibc-2.35
Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.16.20-3.el7.bzl.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA L40
GPU 1: NVIDIA L40
GPU 2: NVIDIA L40
GPU 3: NVIDIA L40
GPU 4: NVIDIA L40
GPU 5: NVIDIA L40
GPU 6: NVIDIA L40
GPU 7: NVIDIA L40
Nvidia driver version: 535.104.12
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
Stepping: 6
CPU max MHz: 3400.0000
CPU min MHz: 800.0000
BogoMIPS: 5200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid fsrm md_clear pconfig flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 3 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 80 MiB (64 instances)
L3 cache: 96 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Vulnerable: eIBRS with unprivileged eBPF
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] optree==0.11.0
[pip3] sentence-transformers==2.2.2
[pip3] torch==2.3.1
[pip3] torchaudio==2.3.1
[pip3] torchelastic==0.2.2
[pip3] torchvision==0.18.1
[pip3] transformers==4.43.1
[pip3] triton==2.3.1
[conda] blas 1.0 mkl
[conda] ffmpeg 4.3 hf484d3e_0 pytorch
[conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch
[conda] mkl 2023.1.0 h213fc3f_46344
[conda] mkl-service 2.4.0 py310h5eee18b_1
[conda] mkl_fft 1.3.8 py310h5eee18b_0
[conda] mkl_random 1.2.4 py310hdb19cb5_0
[conda] numpy 1.26.4 py310h5f9d8c6_0
[conda] numpy-base 1.26.4 py310hb5e798b_0
[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi
[conda] optree 0.11.0 pypi_0 pypi
[conda] pytorch-cuda 12.1 ha16c6d3_5 pytorch
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] sentence-transformers 2.2.2 pypi_0 pypi
[conda] torch 2.3.1 pypi_0 pypi
[conda] torchaudio 2.3.1 py310_cu121 pytorch
[conda] torchelastic 0.2.2 pypi_0 pypi
[conda] torchvision 0.18.1 pypi_0 pypi
[conda] transformers 4.43.1 pypi_0 pypi
[conda] triton 2.3.1 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.3.post1
vLLM Build Flags:
CUDA Archs: 7.0 7.5 8.0 8.6 8.9 9.0; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PIX PXB PXB SYS SYS SYS SYS PXB 0-31,64-95 0 N/A
GPU1 PIX X PXB PXB SYS SYS SYS SYS PXB 0-31,64-95 0 N/A
GPU2 PXB PXB X PXB SYS SYS SYS SYS PXB 0-31,64-95 0 N/A
GPU3 PXB PXB PXB X SYS SYS SYS SYS PIX 0-31,64-95 0 N/A
GPU4 SYS SYS SYS SYS X PIX PXB PXB SYS 32-63,96-127 1 N/A
GPU5 SYS SYS SYS SYS PIX X PXB PXB SYS 32-63,96-127 1 N/A
GPU6 SYS SYS SYS SYS PXB PXB X PXB SYS 32-63,96-127 1 N/A
GPU7 SYS SYS SYS SYS PXB PXB PXB X SYS 32-63,96-127 1 N/A
NIC0 PXB PXB PXB PIX SYS SYS SYS SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_bond_0
🐛 Describe the bug
The Code
from vllm.entrypoints.llm import LLM
from vllm.sampling_params import SamplingParams
model_path = '/models/Llama-3-8B_w8a16_packed_quantize'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompts = [
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.0,
max_tokens=256,
stop=['<|end_of_text|>'],
skip_special_tokens=False)
# Create an LLM.
llm = LLM(model=model_path,
tensor_parallel_size=2,
disable_custom_all_reduce=True,
trust_remote_code=True,
worker_use_ray=True,
quantization='compressed-tensors',
enable_chunked_prefill=False,
dtype='bfloat16'
)
The Mode Config with Compressed tensors
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"compression_config": {
"config_groups": {
"group_1": {
"input_activations": null,
"output_activations": null,
"targets": [
"Linear"
],
"weights": {
"block_structure": null,
"dynamic": false,
"group_size": null,
"num_bits": 8,
"observer": "minmax",
"observer_kwargs": {},
"strategy": "channel",
"symmetric": true,
"type": "int"
}
}
},
"format": "pack-quantized",
"global_compression_ratio": null,
"ignore": [
"lm_head"
],
"quant_method": "compressed-tensors",
"quantization_status": "calibration"
},
"eos_token_id": 128001,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 14336,
"max_position_embeddings": 8192,
"mlp_bias": false,
"model_type": "llama",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": null,
"rope_theta": 500000.0,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.42.3",
"use_cache": true,
"vocab_size": 128256
When tp=1, it is working fine, But When tp = 2 or tp = 4, NCCL ERROR occurs
The Model is Normal load, ERROR occurs when profile_run,
But when I use vllm0.5.1, I don't have this problem。
Hopefully this will help to see what's wrong and how I should fix it,Thanks!
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity