-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTransfer_script_R1.Rmd
434 lines (322 loc) · 12.6 KB
/
Transfer_script_R1.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
---
title: "Transfer Analyses"
author: "Virginia Marchman and Janet Bang"
date: "April 15, 2019; updated September 20, 2019; Updated for R1 of paper January 21, 2020"
output:
html_document:
toc: true
toc_float: true
---
```{r, echo = F}
library(knitr)
opts_chunk$set(echo=TRUE,
warning=FALSE, message=FALSE,
cache=FALSE)
options(width = 100)
```
This is the code to generate the analyses in Marchman, Bermudez, Bang & Fernald (2019), Off to a good start: Early Spanish-language processing efficiency supports Spanish- and English-language outcomes at 4 ½ years in sequential bilinguals. Submitted Oct 2019; Revisions made January 2020; Final manuscript accepted for publication April 2020.
Load libraries and set theme
```{r}
library(tidyverse)
library(effsize)
library(stargazer)
library(psych)
library(powerAnalysis)
theme_set(theme_bw())
```
# Data prepping
### Load data
```{r}
transfer <- read_csv("transfer.csv") %>%
dplyr::select(-X1)
```
### Check data
```{r}
# Sex - 41 boys, 54 girls
transfer %>%
group_by(Sex) %>%
count()
```
### Transform variables (e.g., character to factor)
```{r}
transfer <- transfer %>%
mutate(ID_1 = factor(ID_1),
MomCountryBirth = factor(MomCountryBirth),
Sex = factor(Sex))
```
# Demographic variables
### Descriptive statistics
```{r}
# All descriptives for continuous variables
age_descriptives <- sapply(transfer[, 4], describe)
other_descriptives <- sapply(transfer[, 9:22], describe)
cbind(age_descriptives, other_descriptives)
```
### Percentage of mothers by country of birth
```{r}
transfer %>%
group_by(MomCountryBirth) %>%
count() %>%
ungroup() %>%
mutate(percentage = n/sum(n))
```
### Percentage of children by birth order
```{r}
transfer %>%
group_by(BirthOrder) %>%
count() %>%
ungroup() %>%
mutate(percentage = n/sum(n))
```
### Number of trials for RT
```{r}
transfer %>%
summarise(mean_trials = mean(DRT25mKnownN, na.rm = T),
sd_trials = sd(DRT25mKnownN, na.rm = T),
min_trials = min(DRT25mKnownN, na.rm = T),
max_trials = max(DRT25mKnownN, na.rm = T))
```
### Number of trials for Accuracy
```{r}
transfer %>%
summarise(mean_trials = mean(ACC25m3001800KnownN, na.rm = T),
sd_trials = sd(ACC25m3001800KnownN, na.rm = T),
min_trials = min(ACC25m3001800KnownN, na.rm = T),
max_trials = max(ACC25m3001800KnownN, na.rm = T))
```
# Language Background at 2 and 4.5 years
```{r}
# Comparing LBQ OVERALL at 2 and 4.5 yrs
t.test(transfer$LBQSpan25m, transfer$LBQSpan_4.5yrs, paired = TRUE, alternative = "two.sided")
effsize::cohen.d(transfer$LBQSpan25m, transfer$LBQSpan_4.5yrs, paired = T)
# Comparing LBQ CAREGIVERS at 2 and 4.5 yrs
t.test(transfer$LBQSpan25mCaregivers, transfer$LBQSpanCaregivers_4.5yrs, paired = TRUE, alternative = "two.sided")
effsize::cohen.d(transfer$LBQSpan25mCaregivers, transfer$LBQSpanCaregivers_4.5yrs, paired = T)
# Correlations between LBQ OVERALL and LBQ CAREGIVERS
# At 2 years
cor.test(transfer$LBQSpan25m, transfer$LBQSpan25mCaregivers)
# At 4.5 years
cor.test(transfer$LBQSpanCaregivers_4.5yrs, transfer$LBQSpan_4.5yrs)
```
# Child language measures at 2 years
```{r}
# Accuracy - t-test against chance
t.test(transfer$GoodACC25m3001800Known, y = NULL, mu = .50, var.equal = FALSE)
(mean(transfer$GoodACC25m3001800Known) - .50) / sd(transfer$GoodACC25m3001800Known)
# Accuracy and RT
cor.test(transfer$GoodACC25m3001800Known, transfer$GoodDRT25mKnown)
# Correlations between CDI and Processing measures
# CDI and Accuracy
cor.test(transfer$CDIVocPost25, transfer$GoodACC25m3001800Known)
# CDI and RT
cor.test(transfer$CDIVocPost25, transfer$GoodDRT25mKnown)
```
# Child language measures at 4.5 years
```{r}
# Comparing Spanish and English composite scores
t.test(transfer$Spancomposite, transfer$Engcomposite, paired = TRUE, alternative = "two.sided")
effsize::cohen.d(transfer$Spancomposite, transfer$Engcomposite)
# Spanish composite scores against norm
t.test(transfer$Spancomposite, y = NULL, mu = 100, var.equal = FALSE)
ES.t.one(m=92.5,sd=17.3,mu=100)
# English composite scores against norm
t.test(transfer$Engcomposite, y = NULL, mu = 100, var.equal = FALSE)
ES.t.one(m=87.7,sd=13.1,mu=100)
# Correlation between Spanish and English composite scores
cor.test(transfer$Spancomposite, transfer$Engcomposite)
```
# Regression models
### Center covariates
```{r}
# The "c" function turns the class from matrix to numeric
# scale = divides by the standard deviation
transfer <- transfer %>%
mutate(age_4.5y_zscore = c(scale(Age, scale = T)),
hi_4.5y_zscore = c(scale(HI_4.5yrs, scale = T)),
lbq_4.5y_zscore = c(scale(LBQSpan_4.5yrs, scale = T)),
cdi_25m_zscore = c(scale(CDIVocPost25, scale = T)),
rt_zscore = c(scale(GoodDRT25mKnown, scale = T)),
acc_zscore = c(scale(GoodACC25m3001800Known, scale = T)))
```
### Models - Spanish composite
```{r}
# covariates only
m1 <- lm(Spancomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore,
data = transfer)
# covariates + cdi
m2 <- lm(Spancomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore + cdi_25m_zscore,
data = transfer)
# covariates + acc
m3 <- lm(Spancomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore + acc_zscore,
data = transfer)
# covariates + cdi + acc
m4 <- lm(Spancomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore + cdi_25m_zscore +
acc_zscore,
data = transfer)
# covariates + rt
m5 <- lm(Spancomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore + rt_zscore,
data = transfer)
# covariates + cdi + rt
m6 <- lm(Spancomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore + cdi_25m_zscore +
rt_zscore,
data = transfer)
anova(m1, m2)
anova(m1, m3)
anova(m1, m4)
anova(m1, m5)
anova(m1, m6)
stargazer(m1, m2, m3, m4, m5, m6, type = "text",
star.char = c(".","*","**","***"),
star.cutoffs = c(.1, .05, .01, .001),
notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"),
notes.append = F,
digits = 3,
dep.var.labels = c("Spanish Language Composite"),
covariate.labels=c("SES 4.5y", "Spanish Language Exposure at 4.5y",
"Spanish Vocabulary at 25m",
"Spanish Accuracy at 25m",
"Spanish RT at 25m"))
```
### Models - English composite
```{r}
# covariates only
m7 <- lm(Engcomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore,
data = transfer)
# covariates + cdi
m8 <- lm(Engcomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore + cdi_25m_zscore,
data = transfer)
# covariates + acc
m9 <- lm(Engcomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore + acc_zscore,
data = transfer)
# covariates + cdi + acc
m10 <- lm(Engcomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore + cdi_25m_zscore
+ acc_zscore,
data = transfer)
# covariates + rt
m11 <- lm(Engcomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore + rt_zscore,
data = transfer)
# covariates + cdi + rt
m12 <- lm(Engcomposite ~ hi_4.5y_zscore + lbq_4.5y_zscore + cdi_25m_zscore +
rt_zscore,
data = transfer)
anova(m7, m8)
anova(m7, m9)
anova(m7, m10)
anova(m7, m11)
anova(m7, m12)
stargazer(m7, m8, m9, m10, m11, m12, type = "text",
star.char = c(".","*","**","***"),
star.cutoffs = c(.1, .05, .01, .001),
notes = c(". p<0.1; * p<0.05; ** p<0.01; *** p<0.001"),
notes.append = F,
digits = 3,
dep.var.labels = c("English Language Composite"),
covariate.labels=c("SES 4.5y","Spanish Language Exposure at 4.5y",
"Spanish Vocabulary at 25m",
"Spanish Accuracy at 25m",
"RT at 25m"))
```
### Partial regression plot: Spanish Composite and Vocabulary
```{r}
# Spanish Composite and Vocab at 25m (from Model 6)
## spanish composite residuals - not including CDI
m_sp_comp <- lm(Spancomposite ~ hi_4.5y_zscore +
lbq_4.5y_zscore + rt_zscore, data = transfer)
resid_sp_comp <- resid(m_sp_comp)
# cdi residuals - not including spanish composite
m_cdi_resid <- lm(cdi_25m_zscore ~ hi_4.5y_zscore +
lbq_4.5y_zscore + rt_zscore, data = transfer)
resid_cdi <- resid(m_cdi_resid)
# create dataframe
resid_sp_comp_cdi <- data.frame(resid_sp_comp, resid_cdi)
# correlation
corr_sp_comp_cdi <- cor.test(resid_sp_comp, resid_cdi)
round(((corr_sp_comp_cdi$estimate)^2), digits = 3)
# plot
ggplot(resid_sp_comp_cdi, aes(resid_cdi, resid_sp_comp)) +
geom_point() +
geom_smooth(method = "lm") +
theme(text = element_text(size = 20)) +
labs(x = "Spanish Vocabulary at 25m (residuals)", y = "Spanish Language\nComposite\nat 4.5 years\n(residuals)") +
theme(axis.title.y = element_text(angle = 0, vjust = 0.5)) +
annotate("text", x = 2, y = 26.5, label = "paste(R ^ 2, \" = .169\")", parse = TRUE, size = 6) # change this R2 value for each plot
ggsave("./figures/scatterplot_resid_sp_comp_cdi.pdf", height = 8, width = 11, units = "in")
```
### Partial regression plot: Spanish Composite and RT
```{r}
# Spanish Composite and RT at 25m (from Model 6)
## spanish composite residuals - not including rt
m_sp_comp <- lm(Spancomposite ~ hi_4.5y_zscore +
lbq_4.5y_zscore + cdi_25m_zscore, data = transfer)
resid_sp_comp <- resid(m_sp_comp)
# rt residuals - not including spanish composite
m_rt_resid <- lm(rt_zscore ~ hi_4.5y_zscore +
lbq_4.5y_zscore + cdi_25m_zscore, data = transfer)
resid_rt <- resid(m_rt_resid)
# create dataframe
resid_sp_comp_rt <- data.frame(resid_sp_comp, resid_rt)
# correlation
corr_sp_comp_rt <- cor.test(resid_sp_comp, resid_rt)
round((corr_sp_comp_rt$estimate)^2, digits = 3)
# plot
ggplot(resid_sp_comp_rt, aes(resid_rt, resid_sp_comp)) +
geom_point() +
geom_smooth(method = "lm") +
theme(text = element_text(size = 20)) +
labs(x = "Spanish RT at 25m (residuals)", y = "Spanish Language\nComposite\nat 4.5 years\n(residuals)") +
theme(axis.title.y = element_text(angle = 0, vjust = 0.5)) +
annotate("text", x = 2.5, y = 26.5, label = "paste(R ^ 2, \" = .104\")", parse = TRUE, size = 6) # change this R2 value for each plot
ggsave("./figures/scatterplot_resid_sp_comp_rt.pdf", height = 8, width = 11, units = "in")
```
### Partial regression plot: English Composite and Vocabulary
```{r}
# English Composite and Vocab at 25m (from Model 12)
## English composite residuals - not including CDI
m_eng_comp <- lm(Engcomposite ~ hi_4.5y_zscore +
lbq_4.5y_zscore + rt_zscore, data = transfer)
resid_eng_comp <- resid(m_eng_comp)
# cdi residuals - not including English composite
m_cdi_resid <- lm(cdi_25m_zscore ~ hi_4.5y_zscore +
lbq_4.5y_zscore + rt_zscore, data = transfer)
resid_cdi <- resid(m_cdi_resid)
# create dataframe
resid_eng_comp_cdi <- data.frame(resid_eng_comp, resid_cdi)
# correlation
corr_eng_comp_cdi <- cor.test(resid_eng_comp, resid_cdi)
round(((corr_eng_comp_cdi$estimate)^2), digits = 3)
# plot
ggplot(resid_eng_comp_cdi, aes(resid_cdi, resid_eng_comp)) +
geom_point() +
geom_smooth(method = "lm") +
theme(text = element_text(size = 20)) +
labs(x = "Spanish Vocabulary at 25m (residuals)", y = "English Language\nComposite\nat 4.5 years\n(residuals)") +
theme(axis.title.y = element_text(angle = 0, vjust = 0.5)) +
annotate("text", x = 2, y = 26.5, label = "paste(R ^ 2, \" = .038\")", parse = TRUE, size = 6) # change this R2 value for each plot
ggsave("./figures/scatterplot_resid_eng_comp_cdi.pdf", height = 8, width = 11, units = "in")
```
### Partial regression plot: English Composite and RT
```{r}
# English Composite and RT at 25m (from Model 12)
## English composite residuals - not including rt
m_eng_comp <- lm(Engcomposite ~ hi_4.5y_zscore +
lbq_4.5y_zscore + cdi_25m_zscore, data = transfer)
resid_eng_comp <- resid(m_eng_comp)
# rt residuals - not including English composite
m_rt_resid <- lm(rt_zscore ~ hi_4.5y_zscore +
lbq_4.5y_zscore + cdi_25m_zscore, data = transfer)
resid_rt <- resid(m_rt_resid)
# create dataframe
resid_eng_comp_rt <- data.frame(resid_eng_comp, resid_rt)
# correlation
corr_eng_comp_rt <- cor.test(resid_eng_comp, resid_rt)
round((corr_eng_comp_rt$estimate)^2, digits = 3)
# plot
ggplot(resid_eng_comp_rt, aes(resid_rt, resid_eng_comp)) +
geom_point() +
geom_smooth(method = "lm") +
theme(text = element_text(size = 20)) +
labs(x = "Spanish RT at 25m (residuals)", y = "English Language\nComposite\nat 4.5 years\n(residuals)") +
theme(axis.title.y = element_text(angle = 0, vjust = 0.5)) +
annotate("text", x = 2.5, y = 26.5, label = "paste(R ^ 2, \" = .092\")", parse = TRUE, size = 6) # change this R2 value for each plot
ggsave("./figures/scatterplot_resid_eng_comp_rt.pdf", height = 8, width = 11, units = "in")
```