-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraffic.py
75 lines (60 loc) · 2.1 KB
/
traffic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import cv2
import numpy as np
import os
import sys
import tensorflow as tf
from sklearn.model_selection import train_test_split
EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4
def main():
if len(sys.argv) not in [2, 3]:
sys.exit("Usage: python traffic.py data_directory [model.h5]")
images, labels = load_data(sys.argv[1])
labels = tf.keras.utils.to_categorical(labels)
x_train, x_test, y_train, y_test = train_test_split(
np.array(images), np.array(labels), test_size=TEST_SIZE
)
model = get_model()
model.fit(x_train, y_train, epochs=EPOCHS)
model.evaluate(x_test, y_test, verbose=2)
if len(sys.argv) == 3:
filename = sys.argv[2]
model.save(filename)
print(f"Model saved to {filename}.")
def load_data(data_dir):
images = []
labels = []
for category in range(NUM_CATEGORIES):
category_dir = os.path.join(data_dir, str(category))
for image_name in os.listdir(category_dir):
image_path = os.path.join(category_dir, image_name)
img = cv2.imread(image_path)
img = cv2.resize(img, (IMG_WIDTH, IMG_HEIGHT))
images.append(img)
labels.append(category)
return images, labels
def get_model():
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(NUM_CATEGORIES, activation='softmax')
])
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
return model
if __name__ == "__main__":
main()