diff --git a/README.md b/README.md index 27148c9..6d69977 100644 --- a/README.md +++ b/README.md @@ -8,7 +8,7 @@ Simulation library for very simple simulations to *benchmark* machine learning a ### Why do we need it? Why is it useful? 1. There are very universally recognized scientifically meaningful benchmark data sets, or methods with which to generate them. -2. A very simple data set will have objects, patterns, and signals that are intuitively quanitifiable and will be fast to generate. +2. A very simple data set will have objects, patterns, and signals that are intuitively quantifiable and will be fast to generate. 3. A very simple data set will be a great testing ground for new networks and for newcomers to practice with the technology. ## Documentation @@ -68,7 +68,7 @@ poetry run pytest --cov - Rectangle, Regular Polygon, Arc, Line, Ellipse 3. Physics Objects - simple physics simulations -- Neutonian Pendulum, Hamiltonian Pendulum +- Newtonian Pendulum, Hamiltonian Pendulum ## Example @@ -89,16 +89,19 @@ configuration = { "acceleration_due_to_gravity": 9.8, "noise_std_percent":{ "acceleration_due_to_gravity": 0 - }, - "object_parameters":{ - "time": np.linspace(0, 1, 10) - } + } + }, + "object_parameters":{ + "time": np.linspace(0, 1, 10) + } } -phy_objects = Collection(configuration)() +phy_objects = Collection(configuration) + +phy_objects() objects = phy_objects.objects -parameters = phy_objects.object_parameters +parameters = phy_objects.object_params ``` * Produce a noisy shape image with a rectangle and an arc @@ -110,40 +113,37 @@ from deepbench.collection import Collection configuration = { "object_type": "shape", "object_name": "ShapeImage", - "total_runs": 1, "image_parameters": { "image_shape": (28, 28), "object_noise_level": 0.6 }, - "object_parameters": { - [ - "rectangle": { - "object": { - "width": np.random.default_rng().integers(2, 28), - "height": np.random.default_rng().integers(2, 28), - "fill": True - }, - "instance": {} - }, - "arc":{ - "object": { - "radius": np.random.default_rng().integers(2, 28), - "theta1":np.random.default_rng().integers(0, 20), - "theta2":np.random.default_rng().integers(21, 180) - }, - "instance":{} - } - - ] - } + + "rectangle":{ + "object": { + "width": np.random.default_rng().integers(2, 28), + "height": np.random.default_rng().integers(2, 28), + "fill": True + }, + "instance": {} + }, + "arc":{ + "object": { + "radius": np.random.default_rng().integers(2, 28), + "theta1":np.random.default_rng().integers(0, 20), + "theta2":np.random.default_rng().integers(21, 180) + }, + "instance":{} + } + } } -shape_image = Collection(configuration)() +shape_image = Collection(configuration) +shape_image() objects = shape_image.objects -parameters = shape_image.object_parameters +parameters = shape_image.object_params ``` @@ -155,7 +155,7 @@ import numpy as np star = StarObject( image_dimensions = (28,28), - noise = 0.3, + noise_level = 0.3, radius= 0.8, amplitude = 1.0 ) @@ -163,7 +163,8 @@ star = StarObject( generated_stars = [] x_position, y_position = np.random.default_rng().uniform(low=1, high=27, size=(2, 50)) for x_pos, y_pos in zip(x_position, y_position): - generated-stars.append(star.create_object(x_pos, y_pos)) + star_object = star.create_object(x_pos, y_pos) + generated_stars.append(star_object) ```