forked from google/highway
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patharm_sve-inl.h
6369 lines (5447 loc) · 233 KB
/
arm_sve-inl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2021 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Arm SVE[2] vectors (length not known at compile time).
// External include guard in highway.h - see comment there.
#include <arm_sve.h>
#include "hwy/ops/shared-inl.h"
// Arm C215 declares that SVE vector lengths will always be a power of two.
// We default to relying on this, which makes some operations more efficient.
// You can still opt into fixups by setting this to 0 (unsupported).
#ifndef HWY_SVE_IS_POW2
#define HWY_SVE_IS_POW2 1
#endif
#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
#define HWY_SVE_HAVE_2 1
#else
#define HWY_SVE_HAVE_2 0
#endif
// If 1, both __bf16 and a limited set of *_bf16 SVE intrinsics are available:
// create/get/set/dup, ld/st, sel, rev, trn, uzp, zip.
#if HWY_ARM_HAVE_SCALAR_BF16_TYPE && defined(__ARM_FEATURE_SVE_BF16)
#define HWY_SVE_HAVE_BF16_FEATURE 1
#else
#define HWY_SVE_HAVE_BF16_FEATURE 0
#endif
// HWY_SVE_HAVE_BF16_VEC is defined to 1 if the SVE svbfloat16_t vector type
// is supported, even if HWY_SVE_HAVE_BF16_FEATURE (= intrinsics) is 0.
#if HWY_SVE_HAVE_BF16_FEATURE || \
(HWY_COMPILER_CLANG >= 1200 && defined(__ARM_FEATURE_SVE_BF16)) || \
HWY_COMPILER_GCC_ACTUAL >= 1000
#define HWY_SVE_HAVE_BF16_VEC 1
#else
#define HWY_SVE_HAVE_BF16_VEC 0
#endif
// HWY_SVE_HAVE_F32_TO_BF16C is defined to 1 if the SVE svcvt_bf16_f32_x
// and svcvtnt_bf16_f32_x intrinsics are available, even if the __bf16 type
// is disabled
#if HWY_SVE_HAVE_BF16_VEC && defined(__ARM_FEATURE_SVE_BF16)
#define HWY_SVE_HAVE_F32_TO_BF16C 1
#else
#define HWY_SVE_HAVE_F32_TO_BF16C 0
#endif
HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {
template <class V>
struct DFromV_t {}; // specialized in macros
template <class V>
using DFromV = typename DFromV_t<RemoveConst<V>>::type;
template <class V>
using TFromV = TFromD<DFromV<V>>;
// ================================================== MACROS
// Generate specializations and function definitions using X macros. Although
// harder to read and debug, writing everything manually is too bulky.
namespace detail { // for code folding
// Args: BASE, CHAR, BITS, HALF, NAME, OP
// Unsigned:
#define HWY_SVE_FOREACH_U08(X_MACRO, NAME, OP) X_MACRO(uint, u, 8, 8, NAME, OP)
#define HWY_SVE_FOREACH_U16(X_MACRO, NAME, OP) X_MACRO(uint, u, 16, 8, NAME, OP)
#define HWY_SVE_FOREACH_U32(X_MACRO, NAME, OP) \
X_MACRO(uint, u, 32, 16, NAME, OP)
#define HWY_SVE_FOREACH_U64(X_MACRO, NAME, OP) \
X_MACRO(uint, u, 64, 32, NAME, OP)
// Signed:
#define HWY_SVE_FOREACH_I08(X_MACRO, NAME, OP) X_MACRO(int, s, 8, 8, NAME, OP)
#define HWY_SVE_FOREACH_I16(X_MACRO, NAME, OP) X_MACRO(int, s, 16, 8, NAME, OP)
#define HWY_SVE_FOREACH_I32(X_MACRO, NAME, OP) X_MACRO(int, s, 32, 16, NAME, OP)
#define HWY_SVE_FOREACH_I64(X_MACRO, NAME, OP) X_MACRO(int, s, 64, 32, NAME, OP)
// Float:
#define HWY_SVE_FOREACH_F16(X_MACRO, NAME, OP) \
X_MACRO(float, f, 16, 16, NAME, OP)
#define HWY_SVE_FOREACH_F32(X_MACRO, NAME, OP) \
X_MACRO(float, f, 32, 16, NAME, OP)
#define HWY_SVE_FOREACH_F64(X_MACRO, NAME, OP) \
X_MACRO(float, f, 64, 32, NAME, OP)
#define HWY_SVE_FOREACH_BF16_UNCONDITIONAL(X_MACRO, NAME, OP) \
X_MACRO(bfloat, bf, 16, 16, NAME, OP)
#if HWY_SVE_HAVE_BF16_FEATURE
#define HWY_SVE_FOREACH_BF16(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_BF16_UNCONDITIONAL(X_MACRO, NAME, OP)
// We have both f16 and bf16, so nothing is emulated.
// NOTE: hwy::EnableIf<!hwy::IsSame<D, D>()>* = nullptr is used instead of
// hwy::EnableIf<false>* = nullptr to avoid compiler errors since
// !hwy::IsSame<D, D>() is always false and as !hwy::IsSame<D, D>() will cause
// SFINAE to occur instead of a hard error due to a dependency on the D template
// argument
#define HWY_SVE_IF_EMULATED_D(D) hwy::EnableIf<!hwy::IsSame<D, D>()>* = nullptr
#define HWY_GENERIC_IF_EMULATED_D(D) \
hwy::EnableIf<!hwy::IsSame<D, D>()>* = nullptr
#define HWY_SVE_IF_NOT_EMULATED_D(D) hwy::EnableIf<true>* = nullptr
#else
#define HWY_SVE_FOREACH_BF16(X_MACRO, NAME, OP)
#define HWY_SVE_IF_EMULATED_D(D) HWY_IF_BF16_D(D)
#define HWY_GENERIC_IF_EMULATED_D(D) HWY_IF_BF16_D(D)
#define HWY_SVE_IF_NOT_EMULATED_D(D) HWY_IF_NOT_BF16_D(D)
#endif // HWY_SVE_HAVE_BF16_FEATURE
// For all element sizes:
#define HWY_SVE_FOREACH_U(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U08(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U16(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U64(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_I(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I08(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I16(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I64(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_F3264(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F64(X_MACRO, NAME, OP)
// HWY_SVE_FOREACH_F does not include HWY_SVE_FOREACH_BF16 because SVE lacks
// bf16 overloads for some intrinsics (especially less-common arithmetic).
// However, this does include f16 because SVE supports it unconditionally.
#define HWY_SVE_FOREACH_F(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F16(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F3264(X_MACRO, NAME, OP)
// Commonly used type categories for a given element size:
#define HWY_SVE_FOREACH_UI08(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U08(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I08(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_UI16(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U16(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I16(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_UI32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I32(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_UI64(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U64(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I64(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_UIF3264(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_UI32(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_UI64(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F3264(X_MACRO, NAME, OP)
// Commonly used type categories:
#define HWY_SVE_FOREACH_UI(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH_IF(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F(X_MACRO, NAME, OP)
#define HWY_SVE_FOREACH(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_U(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_I(X_MACRO, NAME, OP) \
HWY_SVE_FOREACH_F(X_MACRO, NAME, OP)
// Assemble types for use in x-macros
#define HWY_SVE_T(BASE, BITS) BASE##BITS##_t
#define HWY_SVE_D(BASE, BITS, N, POW2) Simd<HWY_SVE_T(BASE, BITS), N, POW2>
#define HWY_SVE_V(BASE, BITS) sv##BASE##BITS##_t
#define HWY_SVE_TUPLE(BASE, BITS, MUL) sv##BASE##BITS##x##MUL##_t
} // namespace detail
#define HWY_SPECIALIZE(BASE, CHAR, BITS, HALF, NAME, OP) \
template <> \
struct DFromV_t<HWY_SVE_V(BASE, BITS)> { \
using type = ScalableTag<HWY_SVE_T(BASE, BITS)>; \
};
HWY_SVE_FOREACH(HWY_SPECIALIZE, _, _)
#if HWY_SVE_HAVE_BF16_FEATURE || HWY_SVE_HAVE_BF16_VEC
HWY_SVE_FOREACH_BF16_UNCONDITIONAL(HWY_SPECIALIZE, _, _)
#endif
#undef HWY_SPECIALIZE
// Note: _x (don't-care value for inactive lanes) avoids additional MOVPRFX
// instructions, and we anyway only use it when the predicate is ptrue.
// vector = f(vector), e.g. Not
#define HWY_SVE_RETV_ARGPV(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v); \
}
#define HWY_SVE_RETV_ARGV(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
return sv##OP##_##CHAR##BITS(v); \
}
// vector = f(vector, scalar), e.g. detail::AddN
#define HWY_SVE_RETV_ARGPVN(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_T(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), a, b); \
}
#define HWY_SVE_RETV_ARGVN(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_T(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS(a, b); \
}
// vector = f(vector, vector), e.g. Add
#define HWY_SVE_RETV_ARGVV(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS(a, b); \
}
// All-true mask
#define HWY_SVE_RETV_ARGPVV(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), a, b); \
}
// User-specified mask. Mask=false value is undefined and must be set by caller
// because SVE instructions take it from one of the two inputs, whereas
// AVX-512, RVV and Highway allow a third argument.
#define HWY_SVE_RETV_ARGMVV(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(svbool_t m, HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS##_x(m, a, b); \
}
#define HWY_SVE_RETV_ARGVVV(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b, \
HWY_SVE_V(BASE, BITS) c) { \
return sv##OP##_##CHAR##BITS(a, b, c); \
}
// ------------------------------ Lanes
namespace detail {
// Returns actual lanes of a hardware vector without rounding to a power of two.
template <typename T, HWY_IF_T_SIZE(T, 1)>
HWY_INLINE size_t AllHardwareLanes() {
return svcntb_pat(SV_ALL);
}
template <typename T, HWY_IF_T_SIZE(T, 2)>
HWY_INLINE size_t AllHardwareLanes() {
return svcnth_pat(SV_ALL);
}
template <typename T, HWY_IF_T_SIZE(T, 4)>
HWY_INLINE size_t AllHardwareLanes() {
return svcntw_pat(SV_ALL);
}
template <typename T, HWY_IF_T_SIZE(T, 8)>
HWY_INLINE size_t AllHardwareLanes() {
return svcntd_pat(SV_ALL);
}
// All-true mask from a macro
#if HWY_SVE_IS_POW2
#define HWY_SVE_ALL_PTRUE(BITS) svptrue_b##BITS()
#define HWY_SVE_PTRUE(BITS) svptrue_b##BITS()
#else
#define HWY_SVE_ALL_PTRUE(BITS) svptrue_pat_b##BITS(SV_ALL)
#define HWY_SVE_PTRUE(BITS) svptrue_pat_b##BITS(SV_POW2)
#endif // HWY_SVE_IS_POW2
} // namespace detail
#if HWY_HAVE_SCALABLE
// Returns actual number of lanes after capping by N and shifting. May return 0
// (e.g. for "1/8th" of a u32x4 - would be 1 for 1/8th of u32x8).
template <typename T, size_t N, int kPow2>
HWY_API size_t Lanes(Simd<T, N, kPow2> d) {
const size_t actual = detail::AllHardwareLanes<T>();
constexpr size_t kMaxLanes = MaxLanes(d);
constexpr int kClampedPow2 = HWY_MIN(kPow2, 0);
// Common case of full vectors: avoid any extra instructions.
if (detail::IsFull(d)) return actual;
return HWY_MIN(detail::ScaleByPower(actual, kClampedPow2), kMaxLanes);
}
#endif // HWY_HAVE_SCALABLE
// ================================================== MASK INIT
// One mask bit per byte; only the one belonging to the lowest byte is valid.
// ------------------------------ FirstN
#define HWY_SVE_FIRSTN(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API svbool_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, size_t count) { \
const size_t limit = detail::IsFull(d) ? count : HWY_MIN(Lanes(d), count); \
return sv##OP##_b##BITS##_u32(uint32_t{0}, static_cast<uint32_t>(limit)); \
}
HWY_SVE_FOREACH(HWY_SVE_FIRSTN, FirstN, whilelt)
#if HWY_SVE_HAVE_BF16_FEATURE || HWY_SVE_HAVE_BF16_VEC
HWY_SVE_FOREACH_BF16_UNCONDITIONAL(HWY_SVE_FIRSTN, FirstN, whilelt)
#endif
template <class D, HWY_SVE_IF_EMULATED_D(D)>
svbool_t FirstN(D /* tag */, size_t count) {
return FirstN(RebindToUnsigned<D>(), count);
}
#undef HWY_SVE_FIRSTN
template <class D>
using MFromD = svbool_t;
namespace detail {
#define HWY_SVE_WRAP_PTRUE(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API svbool_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */) { \
return HWY_SVE_PTRUE(BITS); \
} \
template <size_t N, int kPow2> \
HWY_API svbool_t All##NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */) { \
return HWY_SVE_ALL_PTRUE(BITS); \
}
HWY_SVE_FOREACH(HWY_SVE_WRAP_PTRUE, PTrue, ptrue) // return all-true
HWY_SVE_FOREACH_BF16_UNCONDITIONAL(HWY_SVE_WRAP_PTRUE, PTrue, ptrue)
#undef HWY_SVE_WRAP_PTRUE
HWY_API svbool_t PFalse() { return svpfalse_b(); }
// Returns all-true if d is HWY_FULL or FirstN(N) after capping N.
//
// This is used in functions that load/store memory; other functions (e.g.
// arithmetic) can ignore d and use PTrue instead.
template <class D>
svbool_t MakeMask(D d) {
return IsFull(d) ? PTrue(d) : FirstN(d, Lanes(d));
}
} // namespace detail
#ifdef HWY_NATIVE_MASK_FALSE
#undef HWY_NATIVE_MASK_FALSE
#else
#define HWY_NATIVE_MASK_FALSE
#endif
template <class D>
HWY_API svbool_t MaskFalse(const D /*d*/) {
return detail::PFalse();
}
// ================================================== INIT
// ------------------------------ Set
// vector = f(d, scalar), e.g. Set
#define HWY_SVE_SET(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
HWY_SVE_T(BASE, BITS) arg) { \
return sv##OP##_##CHAR##BITS(arg); \
}
HWY_SVE_FOREACH(HWY_SVE_SET, Set, dup_n)
#if HWY_SVE_HAVE_BF16_FEATURE // for if-elif chain
HWY_SVE_FOREACH_BF16(HWY_SVE_SET, Set, dup_n)
#elif HWY_SVE_HAVE_BF16_VEC
// Required for Zero and VFromD
template <class D, HWY_IF_BF16_D(D)>
HWY_API svbfloat16_t Set(D d, bfloat16_t arg) {
return svreinterpret_bf16_u16(
Set(RebindToUnsigned<decltype(d)>(), BitCastScalar<uint16_t>(arg)));
}
#else // neither bf16 feature nor vector: emulate with u16
// Required for Zero and VFromD
template <class D, HWY_IF_BF16_D(D)>
HWY_API svuint16_t Set(D d, bfloat16_t arg) {
const RebindToUnsigned<decltype(d)> du;
return Set(du, BitCastScalar<uint16_t>(arg));
}
#endif // HWY_SVE_HAVE_BF16_FEATURE
#undef HWY_SVE_SET
template <class D>
using VFromD = decltype(Set(D(), TFromD<D>()));
using VBF16 = VFromD<ScalableTag<bfloat16_t>>;
// ------------------------------ Zero
template <class D>
VFromD<D> Zero(D d) {
// Cast to support bfloat16_t.
const RebindToUnsigned<decltype(d)> du;
return BitCast(d, Set(du, 0));
}
// ------------------------------ BitCast
namespace detail {
// u8: no change
#define HWY_SVE_CAST_NOP(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) BitCastToByte(HWY_SVE_V(BASE, BITS) v) { \
return v; \
} \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) BitCastFromByte( \
HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, HWY_SVE_V(BASE, BITS) v) { \
return v; \
}
// All other types
#define HWY_SVE_CAST(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_INLINE svuint8_t BitCastToByte(HWY_SVE_V(BASE, BITS) v) { \
return sv##OP##_u8_##CHAR##BITS(v); \
} \
template <size_t N, int kPow2> \
HWY_INLINE HWY_SVE_V(BASE, BITS) \
BitCastFromByte(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, svuint8_t v) { \
return sv##OP##_##CHAR##BITS##_u8(v); \
}
// U08 is special-cased, hence do not use FOREACH.
HWY_SVE_FOREACH_U08(HWY_SVE_CAST_NOP, _, _)
HWY_SVE_FOREACH_I08(HWY_SVE_CAST, _, reinterpret)
HWY_SVE_FOREACH_UI16(HWY_SVE_CAST, _, reinterpret)
HWY_SVE_FOREACH_UI32(HWY_SVE_CAST, _, reinterpret)
HWY_SVE_FOREACH_UI64(HWY_SVE_CAST, _, reinterpret)
HWY_SVE_FOREACH_F(HWY_SVE_CAST, _, reinterpret)
#if HWY_SVE_HAVE_BF16_FEATURE || HWY_SVE_HAVE_BF16_VEC
HWY_SVE_FOREACH_BF16_UNCONDITIONAL(HWY_SVE_CAST, _, reinterpret)
#else // !(HWY_SVE_HAVE_BF16_FEATURE || HWY_SVE_HAVE_BF16_VEC)
template <class V, HWY_SVE_IF_EMULATED_D(DFromV<V>)>
HWY_INLINE svuint8_t BitCastToByte(V v) {
const RebindToUnsigned<DFromV<V>> du;
return BitCastToByte(BitCast(du, v));
}
template <class D, HWY_SVE_IF_EMULATED_D(D)>
HWY_INLINE VFromD<D> BitCastFromByte(D d, svuint8_t v) {
const RebindToUnsigned<decltype(d)> du;
return BitCastFromByte(du, v);
}
#endif // HWY_SVE_HAVE_BF16_FEATURE || HWY_SVE_HAVE_BF16_VEC
#undef HWY_SVE_CAST_NOP
#undef HWY_SVE_CAST
} // namespace detail
template <class D, class FromV>
HWY_API VFromD<D> BitCast(D d, FromV v) {
return detail::BitCastFromByte(d, detail::BitCastToByte(v));
}
// ------------------------------ Undefined
#define HWY_SVE_UNDEFINED(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */) { \
return sv##OP##_##CHAR##BITS(); \
}
HWY_SVE_FOREACH(HWY_SVE_UNDEFINED, Undefined, undef)
#if HWY_SVE_HAVE_BF16_FEATURE || HWY_SVE_HAVE_BF16_VEC
HWY_SVE_FOREACH_BF16_UNCONDITIONAL(HWY_SVE_UNDEFINED, Undefined, undef)
#endif
template <class D, HWY_SVE_IF_EMULATED_D(D)>
VFromD<D> Undefined(D d) {
const RebindToUnsigned<D> du;
return BitCast(d, Undefined(du));
}
// ------------------------------ Tuple
// tuples = f(d, v..), e.g. Create2
#define HWY_SVE_CREATE(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_TUPLE(BASE, BITS, 2) \
NAME##2(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
HWY_SVE_V(BASE, BITS) v0, HWY_SVE_V(BASE, BITS) v1) { \
return sv##OP##2_##CHAR##BITS(v0, v1); \
} \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_TUPLE(BASE, BITS, 3) NAME##3( \
HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, HWY_SVE_V(BASE, BITS) v0, \
HWY_SVE_V(BASE, BITS) v1, HWY_SVE_V(BASE, BITS) v2) { \
return sv##OP##3_##CHAR##BITS(v0, v1, v2); \
} \
template <size_t N, int kPow2> \
HWY_API HWY_SVE_TUPLE(BASE, BITS, 4) \
NAME##4(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
HWY_SVE_V(BASE, BITS) v0, HWY_SVE_V(BASE, BITS) v1, \
HWY_SVE_V(BASE, BITS) v2, HWY_SVE_V(BASE, BITS) v3) { \
return sv##OP##4_##CHAR##BITS(v0, v1, v2, v3); \
}
HWY_SVE_FOREACH(HWY_SVE_CREATE, Create, create)
#if HWY_SVE_HAVE_BF16_FEATURE || HWY_SVE_HAVE_BF16_VEC
HWY_SVE_FOREACH_BF16_UNCONDITIONAL(HWY_SVE_CREATE, Create, create)
#endif
#undef HWY_SVE_CREATE
template <class D>
using Vec2 = decltype(Create2(D(), Zero(D()), Zero(D())));
template <class D>
using Vec3 = decltype(Create3(D(), Zero(D()), Zero(D()), Zero(D())));
template <class D>
using Vec4 = decltype(Create4(D(), Zero(D()), Zero(D()), Zero(D()), Zero(D())));
#define HWY_SVE_GET(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t kIndex> \
HWY_API HWY_SVE_V(BASE, BITS) NAME##2(HWY_SVE_TUPLE(BASE, BITS, 2) tuple) { \
return sv##OP##2_##CHAR##BITS(tuple, kIndex); \
} \
template <size_t kIndex> \
HWY_API HWY_SVE_V(BASE, BITS) NAME##3(HWY_SVE_TUPLE(BASE, BITS, 3) tuple) { \
return sv##OP##3_##CHAR##BITS(tuple, kIndex); \
} \
template <size_t kIndex> \
HWY_API HWY_SVE_V(BASE, BITS) NAME##4(HWY_SVE_TUPLE(BASE, BITS, 4) tuple) { \
return sv##OP##4_##CHAR##BITS(tuple, kIndex); \
}
HWY_SVE_FOREACH(HWY_SVE_GET, Get, get)
#if HWY_SVE_HAVE_BF16_FEATURE || HWY_SVE_HAVE_BF16_VEC
HWY_SVE_FOREACH_BF16_UNCONDITIONAL(HWY_SVE_GET, Get, get)
#endif
#undef HWY_SVE_GET
#define HWY_SVE_SET(BASE, CHAR, BITS, HALF, NAME, OP) \
template <size_t kIndex> \
HWY_API HWY_SVE_TUPLE(BASE, BITS, 2) \
NAME##2(HWY_SVE_TUPLE(BASE, BITS, 2) tuple, HWY_SVE_V(BASE, BITS) vec) { \
return sv##OP##2_##CHAR##BITS(tuple, kIndex, vec); \
} \
template <size_t kIndex> \
HWY_API HWY_SVE_TUPLE(BASE, BITS, 3) \
NAME##3(HWY_SVE_TUPLE(BASE, BITS, 3) tuple, HWY_SVE_V(BASE, BITS) vec) { \
return sv##OP##3_##CHAR##BITS(tuple, kIndex, vec); \
} \
template <size_t kIndex> \
HWY_API HWY_SVE_TUPLE(BASE, BITS, 4) \
NAME##4(HWY_SVE_TUPLE(BASE, BITS, 4) tuple, HWY_SVE_V(BASE, BITS) vec) { \
return sv##OP##4_##CHAR##BITS(tuple, kIndex, vec); \
}
HWY_SVE_FOREACH(HWY_SVE_SET, Set, set)
#if HWY_SVE_HAVE_BF16_FEATURE || HWY_SVE_HAVE_BF16_VEC
HWY_SVE_FOREACH_BF16_UNCONDITIONAL(HWY_SVE_SET, Set, set)
#endif
#undef HWY_SVE_SET
// ------------------------------ ResizeBitCast
// Same as BitCast on SVE
template <class D, class FromV>
HWY_API VFromD<D> ResizeBitCast(D d, FromV v) {
return BitCast(d, v);
}
// ------------------------------ Dup128VecFromValues
template <class D, HWY_IF_I8_D(D)>
HWY_API svint8_t Dup128VecFromValues(D /*d*/, TFromD<D> t0, TFromD<D> t1,
TFromD<D> t2, TFromD<D> t3, TFromD<D> t4,
TFromD<D> t5, TFromD<D> t6, TFromD<D> t7,
TFromD<D> t8, TFromD<D> t9, TFromD<D> t10,
TFromD<D> t11, TFromD<D> t12,
TFromD<D> t13, TFromD<D> t14,
TFromD<D> t15) {
return svdupq_n_s8(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13,
t14, t15);
}
template <class D, HWY_IF_U8_D(D)>
HWY_API svuint8_t Dup128VecFromValues(D /*d*/, TFromD<D> t0, TFromD<D> t1,
TFromD<D> t2, TFromD<D> t3, TFromD<D> t4,
TFromD<D> t5, TFromD<D> t6, TFromD<D> t7,
TFromD<D> t8, TFromD<D> t9, TFromD<D> t10,
TFromD<D> t11, TFromD<D> t12,
TFromD<D> t13, TFromD<D> t14,
TFromD<D> t15) {
return svdupq_n_u8(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13,
t14, t15);
}
template <class D, HWY_IF_I16_D(D)>
HWY_API svint16_t Dup128VecFromValues(D /*d*/, TFromD<D> t0, TFromD<D> t1,
TFromD<D> t2, TFromD<D> t3, TFromD<D> t4,
TFromD<D> t5, TFromD<D> t6,
TFromD<D> t7) {
return svdupq_n_s16(t0, t1, t2, t3, t4, t5, t6, t7);
}
template <class D, HWY_IF_U16_D(D)>
HWY_API svuint16_t Dup128VecFromValues(D /*d*/, TFromD<D> t0, TFromD<D> t1,
TFromD<D> t2, TFromD<D> t3, TFromD<D> t4,
TFromD<D> t5, TFromD<D> t6,
TFromD<D> t7) {
return svdupq_n_u16(t0, t1, t2, t3, t4, t5, t6, t7);
}
template <class D, HWY_IF_F16_D(D)>
HWY_API svfloat16_t Dup128VecFromValues(D /*d*/, TFromD<D> t0, TFromD<D> t1,
TFromD<D> t2, TFromD<D> t3,
TFromD<D> t4, TFromD<D> t5,
TFromD<D> t6, TFromD<D> t7) {
return svdupq_n_f16(t0, t1, t2, t3, t4, t5, t6, t7);
}
template <class D, HWY_IF_BF16_D(D)>
HWY_API VBF16 Dup128VecFromValues(D d, TFromD<D> t0, TFromD<D> t1, TFromD<D> t2,
TFromD<D> t3, TFromD<D> t4, TFromD<D> t5,
TFromD<D> t6, TFromD<D> t7) {
#if HWY_SVE_HAVE_BF16_FEATURE
(void)d;
return svdupq_n_bf16(t0, t1, t2, t3, t4, t5, t6, t7);
#else
const RebindToUnsigned<decltype(d)> du;
return BitCast(
d, Dup128VecFromValues(
du, BitCastScalar<uint16_t>(t0), BitCastScalar<uint16_t>(t1),
BitCastScalar<uint16_t>(t2), BitCastScalar<uint16_t>(t3),
BitCastScalar<uint16_t>(t4), BitCastScalar<uint16_t>(t5),
BitCastScalar<uint16_t>(t6), BitCastScalar<uint16_t>(t7)));
#endif
}
template <class D, HWY_IF_I32_D(D)>
HWY_API svint32_t Dup128VecFromValues(D /*d*/, TFromD<D> t0, TFromD<D> t1,
TFromD<D> t2, TFromD<D> t3) {
return svdupq_n_s32(t0, t1, t2, t3);
}
template <class D, HWY_IF_U32_D(D)>
HWY_API svuint32_t Dup128VecFromValues(D /*d*/, TFromD<D> t0, TFromD<D> t1,
TFromD<D> t2, TFromD<D> t3) {
return svdupq_n_u32(t0, t1, t2, t3);
}
template <class D, HWY_IF_F32_D(D)>
HWY_API svfloat32_t Dup128VecFromValues(D /*d*/, TFromD<D> t0, TFromD<D> t1,
TFromD<D> t2, TFromD<D> t3) {
return svdupq_n_f32(t0, t1, t2, t3);
}
template <class D, HWY_IF_I64_D(D)>
HWY_API svint64_t Dup128VecFromValues(D /*d*/, TFromD<D> t0, TFromD<D> t1) {
return svdupq_n_s64(t0, t1);
}
template <class D, HWY_IF_U64_D(D)>
HWY_API svuint64_t Dup128VecFromValues(D /*d*/, TFromD<D> t0, TFromD<D> t1) {
return svdupq_n_u64(t0, t1);
}
template <class D, HWY_IF_F64_D(D)>
HWY_API svfloat64_t Dup128VecFromValues(D /*d*/, TFromD<D> t0, TFromD<D> t1) {
return svdupq_n_f64(t0, t1);
}
// ================================================== LOGICAL
// detail::*N() functions accept a scalar argument to avoid extra Set().
// ------------------------------ Not
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPV, Not, not ) // NOLINT
// ------------------------------ And
namespace detail {
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN, AndN, and_n)
} // namespace detail
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, And, and)
template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V And(const V a, const V b) {
const DFromV<V> df;
const RebindToUnsigned<decltype(df)> du;
return BitCast(df, And(BitCast(du, a), BitCast(du, b)));
}
// ------------------------------ Or
namespace detail {
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN, OrN, orr_n)
} // namespace detail
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, Or, orr)
template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V Or(const V a, const V b) {
const DFromV<V> df;
const RebindToUnsigned<decltype(df)> du;
return BitCast(df, Or(BitCast(du, a), BitCast(du, b)));
}
// ------------------------------ Xor
namespace detail {
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN, XorN, eor_n)
} // namespace detail
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, Xor, eor)
template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V Xor(const V a, const V b) {
const DFromV<V> df;
const RebindToUnsigned<decltype(df)> du;
return BitCast(df, Xor(BitCast(du, a), BitCast(du, b)));
}
// ------------------------------ AndNot
namespace detail {
#define HWY_SVE_RETV_ARGPVN_SWAP(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_T(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), b, a); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN_SWAP, AndNotN, bic_n)
#undef HWY_SVE_RETV_ARGPVN_SWAP
} // namespace detail
#define HWY_SVE_RETV_ARGPVV_SWAP(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), b, a); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV_SWAP, AndNot, bic)
#undef HWY_SVE_RETV_ARGPVV_SWAP
template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V AndNot(const V a, const V b) {
const DFromV<V> df;
const RebindToUnsigned<decltype(df)> du;
return BitCast(df, AndNot(BitCast(du, a), BitCast(du, b)));
}
// ------------------------------ Xor3
#if HWY_SVE_HAVE_2
HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGVVV, Xor3, eor3)
template <class V, HWY_IF_FLOAT_V(V)>
HWY_API V Xor3(const V x1, const V x2, const V x3) {
const DFromV<V> df;
const RebindToUnsigned<decltype(df)> du;
return BitCast(df, Xor3(BitCast(du, x1), BitCast(du, x2), BitCast(du, x3)));
}
#else
template <class V>
HWY_API V Xor3(V x1, V x2, V x3) {
return Xor(x1, Xor(x2, x3));
}
#endif
// ------------------------------ Or3
template <class V>
HWY_API V Or3(V o1, V o2, V o3) {
return Or(o1, Or(o2, o3));
}
// ------------------------------ OrAnd
template <class V>
HWY_API V OrAnd(const V o, const V a1, const V a2) {
return Or(o, And(a1, a2));
}
// ------------------------------ PopulationCount
#ifdef HWY_NATIVE_POPCNT
#undef HWY_NATIVE_POPCNT
#else
#define HWY_NATIVE_POPCNT
#endif
// Need to return original type instead of unsigned.
#define HWY_SVE_POPCNT(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
return BitCast(DFromV<decltype(v)>(), \
sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v)); \
}
HWY_SVE_FOREACH_UI(HWY_SVE_POPCNT, PopulationCount, cnt)
#undef HWY_SVE_POPCNT
// ================================================== SIGN
// ------------------------------ Neg
HWY_SVE_FOREACH_IF(HWY_SVE_RETV_ARGPV, Neg, neg)
HWY_API VBF16 Neg(VBF16 v) {
const DFromV<decltype(v)> d;
const RebindToUnsigned<decltype(d)> du;
using TU = TFromD<decltype(du)>;
return BitCast(d, Xor(BitCast(du, v), Set(du, SignMask<TU>())));
}
// ------------------------------ SaturatedNeg
#if HWY_SVE_HAVE_2
#ifdef HWY_NATIVE_SATURATED_NEG_8_16_32
#undef HWY_NATIVE_SATURATED_NEG_8_16_32
#else
#define HWY_NATIVE_SATURATED_NEG_8_16_32
#endif
#ifdef HWY_NATIVE_SATURATED_NEG_64
#undef HWY_NATIVE_SATURATED_NEG_64
#else
#define HWY_NATIVE_SATURATED_NEG_64
#endif
HWY_SVE_FOREACH_I(HWY_SVE_RETV_ARGPV, SaturatedNeg, qneg)
#endif // HWY_SVE_HAVE_2
// ------------------------------ Abs
HWY_SVE_FOREACH_IF(HWY_SVE_RETV_ARGPV, Abs, abs)
// ------------------------------ SaturatedAbs
#if HWY_SVE_HAVE_2
#ifdef HWY_NATIVE_SATURATED_ABS
#undef HWY_NATIVE_SATURATED_ABS
#else
#define HWY_NATIVE_SATURATED_ABS
#endif
HWY_SVE_FOREACH_I(HWY_SVE_RETV_ARGPV, SaturatedAbs, qabs)
#endif // HWY_SVE_HAVE_2
// ================================================== ARITHMETIC
// Per-target flags to prevent generic_ops-inl.h defining Add etc.
#ifdef HWY_NATIVE_OPERATOR_REPLACEMENTS
#undef HWY_NATIVE_OPERATOR_REPLACEMENTS
#else
#define HWY_NATIVE_OPERATOR_REPLACEMENTS
#endif
// ------------------------------ Add
namespace detail {
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVN, AddN, add_n)
} // namespace detail
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVV, Add, add)
// ------------------------------ Sub
namespace detail {
// Can't use HWY_SVE_RETV_ARGPVN because caller wants to specify pg.
#define HWY_SVE_RETV_ARGPVN_MASK(BASE, CHAR, BITS, HALF, NAME, OP) \
HWY_API HWY_SVE_V(BASE, BITS) \
NAME(svbool_t pg, HWY_SVE_V(BASE, BITS) a, HWY_SVE_T(BASE, BITS) b) { \
return sv##OP##_##CHAR##BITS##_z(pg, a, b); \
}
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVN_MASK, SubN, sub_n)
#undef HWY_SVE_RETV_ARGPVN_MASK
} // namespace detail
HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVV, Sub, sub)
// ------------------------------ SumsOf8
HWY_API svuint64_t SumsOf8(const svuint8_t v) {
const ScalableTag<uint32_t> du32;
const ScalableTag<uint64_t> du64;
const svbool_t pg = detail::PTrue(du64);
const svuint32_t sums_of_4 = svdot_n_u32(Zero(du32), v, 1);
// Compute pairwise sum of u32 and extend to u64.
#if HWY_SVE_HAVE_2
return svadalp_u64_x(pg, Zero(du64), sums_of_4);
#else
const svuint64_t hi = svlsr_n_u64_x(pg, BitCast(du64, sums_of_4), 32);
// Isolate the lower 32 bits (to be added to the upper 32 and zero-extended)
const svuint64_t lo = svextw_u64_x(pg, BitCast(du64, sums_of_4));
return Add(hi, lo);
#endif
}
HWY_API svint64_t SumsOf8(const svint8_t v) {
const ScalableTag<int32_t> di32;
const ScalableTag<int64_t> di64;
const svbool_t pg = detail::PTrue(di64);
const svint32_t sums_of_4 = svdot_n_s32(Zero(di32), v, 1);
#if HWY_SVE_HAVE_2
return svadalp_s64_x(pg, Zero(di64), sums_of_4);
#else
const svint64_t hi = svasr_n_s64_x(pg, BitCast(di64, sums_of_4), 32);
// Isolate the lower 32 bits (to be added to the upper 32 and sign-extended)
const svint64_t lo = svextw_s64_x(pg, BitCast(di64, sums_of_4));
return Add(hi, lo);
#endif
}
// ------------------------------ SumsOf2
#if HWY_SVE_HAVE_2
namespace detail {
HWY_INLINE svint16_t SumsOf2(hwy::SignedTag /*type_tag*/,
hwy::SizeTag<1> /*lane_size_tag*/, svint8_t v) {
const ScalableTag<int16_t> di16;
const svbool_t pg = detail::PTrue(di16);
return svadalp_s16_x(pg, Zero(di16), v);
}
HWY_INLINE svuint16_t SumsOf2(hwy::UnsignedTag /*type_tag*/,
hwy::SizeTag<1> /*lane_size_tag*/, svuint8_t v) {
const ScalableTag<uint16_t> du16;
const svbool_t pg = detail::PTrue(du16);
return svadalp_u16_x(pg, Zero(du16), v);
}
HWY_INLINE svint32_t SumsOf2(hwy::SignedTag /*type_tag*/,
hwy::SizeTag<2> /*lane_size_tag*/, svint16_t v) {
const ScalableTag<int32_t> di32;
const svbool_t pg = detail::PTrue(di32);
return svadalp_s32_x(pg, Zero(di32), v);
}
HWY_INLINE svuint32_t SumsOf2(hwy::UnsignedTag /*type_tag*/,
hwy::SizeTag<2> /*lane_size_tag*/, svuint16_t v) {
const ScalableTag<uint32_t> du32;
const svbool_t pg = detail::PTrue(du32);
return svadalp_u32_x(pg, Zero(du32), v);
}
HWY_INLINE svint64_t SumsOf2(hwy::SignedTag /*type_tag*/,
hwy::SizeTag<4> /*lane_size_tag*/, svint32_t v) {
const ScalableTag<int64_t> di64;
const svbool_t pg = detail::PTrue(di64);
return svadalp_s64_x(pg, Zero(di64), v);
}
HWY_INLINE svuint64_t SumsOf2(hwy::UnsignedTag /*type_tag*/,
hwy::SizeTag<4> /*lane_size_tag*/, svuint32_t v) {
const ScalableTag<uint64_t> du64;
const svbool_t pg = detail::PTrue(du64);
return svadalp_u64_x(pg, Zero(du64), v);
}
} // namespace detail
#endif // HWY_SVE_HAVE_2
// ------------------------------ SumsOf4
namespace detail {
HWY_INLINE svint32_t SumsOf4(hwy::SignedTag /*type_tag*/,
hwy::SizeTag<1> /*lane_size_tag*/, svint8_t v) {
return svdot_n_s32(Zero(ScalableTag<int32_t>()), v, 1);
}
HWY_INLINE svuint32_t SumsOf4(hwy::UnsignedTag /*type_tag*/,
hwy::SizeTag<1> /*lane_size_tag*/, svuint8_t v) {
return svdot_n_u32(Zero(ScalableTag<uint32_t>()), v, 1);
}
HWY_INLINE svint64_t SumsOf4(hwy::SignedTag /*type_tag*/,
hwy::SizeTag<2> /*lane_size_tag*/, svint16_t v) {
return svdot_n_s64(Zero(ScalableTag<int64_t>()), v, 1);
}
HWY_INLINE svuint64_t SumsOf4(hwy::UnsignedTag /*type_tag*/,