forked from besser82/libxcrypt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrypt-sha256.c
307 lines (254 loc) · 9.77 KB
/
crypt-sha256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/* One way encryption based on the SHA256-based Unix crypt implementation.
*
* Written by Ulrich Drepper <drepper at redhat.com> in 2007 [1].
* Modified by Zack Weinberg <zackw at panix.com> in 2017, 2018.
* Composed by Björn Esser <besser82 at fedoraproject.org> in 2018.
* To the extent possible under law, the named authors have waived all
* copyright and related or neighboring rights to this work.
*
* See https://creativecommons.org/publicdomain/zero/1.0/ for further
* details.
*
* This file is a modified except from [2], lines 648 up to 909.
*
* [1] https://www.akkadia.org/drepper/sha-crypt.html
* [2] https://www.akkadia.org/drepper/SHA-crypt.txt
*/
#include "crypt-port.h"
#include "crypt-private.h"
#include "alg-sha256.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#if INCLUDE_sha256
/* Define our magic string to mark salt for SHA256 "encryption"
replacement. */
static const char sha256_salt_prefix[] = "$5$";
/* Prefix for optional rounds specification. */
static const char sha256_rounds_prefix[] = "rounds=";
/* Maximum salt string length. */
#define SALT_LEN_MAX 16
/* Default number of rounds if not explicitly specified. */
#define ROUNDS_DEFAULT 5000
/* Minimum number of rounds. */
#define ROUNDS_MIN 1000
/* Maximum number of rounds. */
#define ROUNDS_MAX 999999999
/* The maximum possible length of a SHA256-hashed password string,
including the terminating NUL character. Prefix (including its NUL)
+ rounds tag ("rounds=$" = "rounds=\0") + strlen(ROUNDS_MAX)
+ salt (up to SALT_LEN_MAX chars) + '$' + hash (43 chars). */
#define LENGTH_OF_NUMBER(n) (sizeof #n - 1)
#define SHA256_HASH_LENGTH \
(sizeof (sha256_salt_prefix) + sizeof (sha256_rounds_prefix) + \
LENGTH_OF_NUMBER (ROUNDS_MAX) + SALT_LEN_MAX + 1 + 43)
static_assert (SHA256_HASH_LENGTH <= CRYPT_OUTPUT_SIZE,
"CRYPT_OUTPUT_SIZE is too small for SHA256");
/* A sha256_buffer holds all of the sensitive intermediate data. */
struct sha256_buffer
{
struct sha256_ctx ctx;
uint8_t result[32];
uint8_t p_bytes[32];
uint8_t s_bytes[32];
};
static_assert (sizeof (struct sha256_buffer) <= ALG_SPECIFIC_SIZE,
"ALG_SPECIFIC_SIZE is too small for SHA256");
/* Table with characters for base64 transformation. */
static const char b64t[] =
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
/* Subroutine of _xcrypt_crypt_sha256_rn: Feed CTX with LEN bytes of a
virtual byte sequence consisting of BLOCK repeated over and over
indefinitely. */
static void
sha256_process_recycled_bytes (unsigned char block[32], size_t len,
struct sha256_ctx *ctx)
{
size_t cnt;
for (cnt = len; cnt >= 32; cnt -= 32)
sha256_process_bytes (block, 32, ctx);
sha256_process_bytes (block, cnt, ctx);
}
void
crypt_sha256_rn (const char *phrase, size_t phr_size,
const char *setting, size_t ARG_UNUSED (set_size),
uint8_t *output, size_t out_size,
void *scratch, size_t scr_size)
{
/* This shouldn't ever happen, but... */
if (out_size < SHA256_HASH_LENGTH
|| scr_size < sizeof (struct sha256_buffer))
{
errno = ERANGE;
return;
}
struct sha256_buffer *buf = scratch;
struct sha256_ctx *ctx = &buf->ctx;
uint8_t *result = buf->result;
uint8_t *p_bytes = buf->p_bytes;
uint8_t *s_bytes = buf->s_bytes;
char *cp = (char *)output;
const char *salt = setting;
size_t salt_size;
size_t cnt;
/* Default number of rounds. */
size_t rounds = ROUNDS_DEFAULT;
bool rounds_custom = false;
/* Find beginning of salt string. The prefix should normally always
be present. Just in case it is not. */
if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
/* Skip salt prefix. */
salt += sizeof (sha256_salt_prefix) - 1;
if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
== 0)
{
const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
/* Do not allow an explicit setting of zero rounds, nor of the
default number of rounds, nor leading zeroes on the rounds. */
if (!(*num >= '1' && *num <= '9'))
{
errno = EINVAL;
return;
}
errno = 0;
char *endp;
rounds = strtoul (num, &endp, 10);
if (endp == num || *endp != '$'
|| rounds < ROUNDS_MIN
|| rounds > ROUNDS_MAX
|| errno)
{
errno = EINVAL;
return;
}
salt = endp + 1;
rounds_custom = true;
}
salt_size = strspn (salt, b64t);
if (salt[salt_size] && salt[salt_size] != '$')
{
errno = EINVAL;
return;
}
if (salt_size > SALT_LEN_MAX)
salt_size = SALT_LEN_MAX;
/* Compute alternate SHA256 sum with input PHRASE, SALT, and PHRASE. The
final result will be added to the first context. */
sha256_init_ctx (ctx);
/* Add phrase. */
sha256_process_bytes (phrase, phr_size, ctx);
/* Add salt. */
sha256_process_bytes (salt, salt_size, ctx);
/* Add phrase again. */
sha256_process_bytes (phrase, phr_size, ctx);
/* Now get result of this (32 bytes). */
sha256_finish_ctx (ctx, result);
/* Prepare for the real work. */
sha256_init_ctx (ctx);
/* Add the phrase string. */
sha256_process_bytes (phrase, phr_size, ctx);
/* The last part is the salt string. This must be at most 8
characters and it ends at the first `$' character (for
compatibility with existing implementations). */
sha256_process_bytes (salt, salt_size, ctx);
/* Add for any character in the phrase one byte of the alternate sum. */
for (cnt = phr_size; cnt > 32; cnt -= 32)
sha256_process_bytes (result, 32, ctx);
sha256_process_bytes (result, cnt, ctx);
/* Take the binary representation of the length of the phrase and for every
1 add the alternate sum, for every 0 the phrase. */
for (cnt = phr_size; cnt > 0; cnt >>= 1)
if ((cnt & 1) != 0)
sha256_process_bytes (result, 32, ctx);
else
sha256_process_bytes (phrase, phr_size, ctx);
/* Create intermediate result. */
sha256_finish_ctx (ctx, result);
/* Start computation of P byte sequence. */
sha256_init_ctx (ctx);
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < phr_size; ++cnt)
sha256_process_bytes (phrase, phr_size, ctx);
/* Finish the digest. */
sha256_finish_ctx (ctx, p_bytes);
/* Start computation of S byte sequence. */
sha256_init_ctx (ctx);
/* For every character in the password add the entire password. */
for (cnt = 0; cnt < (size_t) 16 + (size_t) result[0]; ++cnt)
sha256_process_bytes (salt, salt_size, ctx);
/* Finish the digest. */
sha256_finish_ctx (ctx, s_bytes);
/* Repeatedly run the collected hash value through SHA256 to burn
CPU cycles. */
for (cnt = 0; cnt < rounds; ++cnt)
{
/* New context. */
sha256_init_ctx (ctx);
/* Add phrase or last result. */
if ((cnt & 1) != 0)
sha256_process_recycled_bytes (p_bytes, phr_size, ctx);
else
sha256_process_bytes (result, 32, ctx);
/* Add salt for numbers not divisible by 3. */
if (cnt % 3 != 0)
sha256_process_recycled_bytes (s_bytes, salt_size, ctx);
/* Add phrase for numbers not divisible by 7. */
if (cnt % 7 != 0)
sha256_process_recycled_bytes (p_bytes, phr_size, ctx);
/* Add phrase or last result. */
if ((cnt & 1) != 0)
sha256_process_bytes (result, 32, ctx);
else
sha256_process_recycled_bytes (p_bytes, phr_size, ctx);
/* Create intermediate result. */
sha256_finish_ctx (ctx, result);
}
/* Now we can construct the result string. It consists of four
parts, one of which is optional. We already know that there
is sufficient space at CP for the longest possible result string. */
memcpy (cp, sha256_salt_prefix, sizeof (sha256_salt_prefix) - 1);
cp += sizeof (sha256_salt_prefix) - 1;
if (rounds_custom)
{
int n = snprintf (cp,
SHA256_HASH_LENGTH - (sizeof (sha256_salt_prefix) - 1),
"%s%zu$", sha256_rounds_prefix, rounds);
cp += n;
}
memcpy (cp, salt, salt_size);
cp += salt_size;
*cp++ = '$';
#define b64_from_24bit(B2, B1, B0, N) \
do { \
unsigned int w = ((((unsigned int)(B2)) << 16) | \
(((unsigned int)(B1)) << 8) | \
((unsigned int)(B0))); \
int n = (N); \
while (n-- > 0) \
{ \
*cp++ = b64t[w & 0x3f]; \
w >>= 6; \
} \
} while (0)
b64_from_24bit (result[0], result[10], result[20], 4);
b64_from_24bit (result[21], result[1], result[11], 4);
b64_from_24bit (result[12], result[22], result[2], 4);
b64_from_24bit (result[3], result[13], result[23], 4);
b64_from_24bit (result[24], result[4], result[14], 4);
b64_from_24bit (result[15], result[25], result[5], 4);
b64_from_24bit (result[6], result[16], result[26], 4);
b64_from_24bit (result[27], result[7], result[17], 4);
b64_from_24bit (result[18], result[28], result[8], 4);
b64_from_24bit (result[9], result[19], result[29], 4);
b64_from_24bit (0, result[31], result[30], 3);
*cp = '\0';
}
void
gensalt_sha256_rn (unsigned long count,
const uint8_t *rbytes, size_t nrbytes,
uint8_t *output, size_t output_size)
{
gensalt_sha_rn ('5', SALT_LEN_MAX, ROUNDS_DEFAULT, ROUNDS_MIN, ROUNDS_MAX,
count, rbytes, nrbytes, output, output_size);
}
#endif