-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrojannn.py
402 lines (345 loc) · 19 KB
/
trojannn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import sys, os
from tkinter import E
EXT_DIR = ['..']
for DIR in EXT_DIR:
if DIR not in sys.path: sys.path.append(DIR)
import numpy as np
import torch
from torch import nn, tensor
from torch.utils.data import Dataset, DataLoader, random_split
from torchvision import datasets, transforms
from torchvision.utils import save_image
from tqdm import tqdm
import matplotlib.pyplot as plt
import PIL.Image as Image
import config
import torch.optim as optim
import time
from tqdm import tqdm
from . import BackdoorAttack
from utils import supervisor
from utils.tools import IMG_Dataset, test
from .tools import generate_dataloader, val_atk
import torch.nn.functional as F
import random
def tanh_func(x: torch.Tensor) -> torch.Tensor:
return (x.tanh() + 1) * 0.5
class attacker(BackdoorAttack):
r"""TrojanNN proposed by Yingqi Liu from Purdue University in NDSS 2018.
It inherits :class:`trojanvision.attacks.BackdoorAttack`.
Based on :class:`trojanvision.attacks.BadNet`,
TrojanNN preprocesses watermark pixel values to maximize
activations of well-connected neurons in :attr:`self.preprocess_layer`.
See Also:
* paper: `Trojaning Attack on Neural Networks`_
* code: https://github.com/PurduePAML/TrojanNN
* website: https://purduepaml.github.io/TrojanNN
Args:
preprocess_layer (str): The chosen layer
to maximize neuron activation.
Defaults to ``'flatten'``.
preprocess_next_layer (str): The next layer
after preprocess_layer to find neuron index.
Defaults to ``'classifier.fc'``.
target_value (float): TrojanNN neuron activation target value.
Defaults to ``100.0``.
neuron_num (int): TrojanNN neuron number to maximize activation.
Defaults to ``2``.
neuron_epoch (int): TrojanNN neuron optimization epoch.
Defaults to ``1000``.
neuron_lr (float): TrojanNN neuron optimization learning rate.
Defaults to ``0.1``.
.. _Trojaning Attack on Neural Networks:
https://github.com/PurduePAML/TrojanNN/blob/master/trojan_nn.pdf
"""
def __init__(self, args, preprocess_layer: str = 'avgpool', preprocess_next_layer: str = 'linear',
target_value: float = 100.0, neuron_num: int = 100,
neuron_lr: float = 0.1, neuron_epoch: int = 1000, batch_size=128):
super().__init__(args)
self.args = args
self.preprocess_layer = preprocess_layer
self.preprocess_next_layer = preprocess_next_layer
self.target_value = target_value
self.neuron_lr = neuron_lr
self.neuron_epoch = neuron_epoch
self.neuron_num = neuron_num
self.neuron_idx: torch.Tensor = None
self.background = torch.zeros(self.shape, device='cuda').unsqueeze(0)
# Original code: doesn't work on resnet18_comp
# self.background = torch.normal(mean=175.0 / 255, std=8.0 / 255,
# size=self.shape,
# device='cuda').clamp(0, 1).unsqueeze(0)
self.args.poison_type = 'none'
self.args.poison_rate = 0
arch = supervisor.get_arch(args)
self.model = arch(num_classes=self.num_classes).cuda()
self.model.load_state_dict(torch.load(supervisor.get_model_dir(args)))
self.model.eval()
print(f"Loaded model from {supervisor.get_model_dir(args)}")
self.args.poison_type = 'trojannn'
# self.loader = generate_dataloader(dataset=self.dataset, dataset_path=config.data_dir, batch_size=batch_size, split='val')
trigger_mask_path = os.path.join(config.triggers_dir, f'mask_trojan_square_{self.img_size}.png')
if os.path.exists(trigger_mask_path): # if there explicitly exists a trigger mask (with the same name)
print('trigger_mask_path:', trigger_mask_path)
self.trigger_mask = Image.open(trigger_mask_path).convert("RGB")
self.trigger_mask = transforms.ToTensor()(self.trigger_mask)[0].cuda() # only use 1 channel
else: # by default, all black pixels are masked with 0's (not used)
print('No trigger mask found! By default masking all black pixels...')
self.trigger_mask = torch.logical_or(torch.logical_or(self.trigger_mark[0] > 0, self.trigger_mark[1] > 0), self.trigger_mark[2] > 0).cuda()
def attack(self):
args = self.args
self.neuron_idx = self.get_neuron_idx()
print('Neuron Index: ', self.neuron_idx.cpu().tolist())
self.preprocess_mark(neuron_idx=self.neuron_idx)
saved_trigger_path = os.path.join(config.triggers_dir, f'trojannn_{args.dataset}_seed={args.seed}.png')
save_image(self.trigger_mark * self.trigger_mask, saved_trigger_path)
print(f"Saved trigger to '{saved_trigger_path}'")
# self.trigger_mark = torch.rand_like(self.trigger_mark)
self.retrain()
def get_neuron_idx(self) -> torch.Tensor:
r"""Get top :attr:`self.neuron_num` well-connected neurons
in :attr:`self.preprocess_layer`.
It is calculated w.r.t. in_channels of
:attr:`self.preprocess_next_layer` weights.
Returns:
torch.Tensor: Neuron index list tensor with shape ``(self.neuron_num)``.
"""
weight = self.model.state_dict()[self.preprocess_next_layer + '.weight'].abs()
if weight.dim() > 2:
weight = weight.flatten(2).sum(2)
return weight.sum(0).argsort(descending=True)[:self.neuron_num]
def get_neuron_value(self, trigger_input: torch.Tensor, neuron_idx: torch.Tensor) -> float:
r"""Get average neuron activation value of :attr:`trigger_input` for :attr:`neuron_idx`.
The feature map is obtained by calling :meth:`trojanzoo.models.Model.get_layer()`.
Args:
trigger_input (torch.Tensor): Poison input tensor with shape ``(N, C, H, W)``.
neuron_idx (torch.Tensor): Neuron index list tensor with shape ``(self.neuron_num)``.
Returns:
float: Average neuron activation value.
"""
trigger_feats = self.model.get_layer(
trigger_input, layer_output=self.preprocess_layer)[:, neuron_idx].abs()
if trigger_feats.dim() > 2:
trigger_feats = trigger_feats.flatten(2).sum(2)
return trigger_feats.sum().item()
def preprocess_mark(self, neuron_idx: torch.Tensor):
r"""Optimize mark to maxmize activation on :attr:`neuron_idx`.
It uses :any:`torch.optim.Adam` and
:any:`torch.optim.lr_scheduler.CosineAnnealingLR`
with tanh objective funcion.
The feature map is obtained by calling
:meth:`trojanvision.models.ImageModel.get_layer()`.
Args:
neuron_idx (torch.Tensor): Neuron index list tensor with shape ``(self.neuron_num)``.
"""
atanh_mark = torch.randn_like(self.trigger_mark, requires_grad=True)
# Original code: no difference
# start_h, start_w = self.mark.mark_height_offset, self.mark.mark_width_offset
# end_h, end_w = start_h + self.mark.mark_height, start_w + self.mark.mark_width
# self.mark.mark[:-1] = self.background[0, :, start_h:end_h, start_w:end_w]
# atanh_mark = (self.mark.mark[:-1] * (2 - 1e-5) - 1).atanh()
# atanh_mark.requires_grad_()
self.trigger_mark = tanh_func(atanh_mark.detach())
self.trigger_mark.detach_()
optimizer = torch.optim.Adam([atanh_mark], lr=self.neuron_lr)
# No difference for SGD
# optimizer = optim.SGD([atanh_mark], lr=self.neuron_lr)
optimizer.zero_grad()
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=self.neuron_epoch)
with torch.no_grad():
trigger_input = self.add_mark(self.background, mark_alpha=1.0)
print('Neuron Value Before Preprocessing:',
f'{self.get_neuron_value(self.normalizer(trigger_input), neuron_idx):.5f}')
for _ in range(self.neuron_epoch):
self.trigger_mark = tanh_func(atanh_mark)
trigger_input = self.add_mark(self.background, mark_alpha=1.0)
trigger_feats = self.model.get_layer(self.normalizer(trigger_input), layer_output=self.preprocess_layer)
trigger_feats = trigger_feats[:, neuron_idx].abs()
if trigger_feats.dim() > 2:
trigger_feats = trigger_feats.flatten(2).sum(2)
# Original code
# trigger_feats = trigger_feats.flatten(2).amax(2)
loss = F.mse_loss(trigger_feats, self.target_value * torch.ones_like(trigger_feats),
reduction='sum') # paper's formula
# Original code: no difference
# loss = -self.target_value * trigger_feats.sum()
loss.backward(inputs=[atanh_mark])
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
self.trigger_mark.detach_()
# Original Code: no difference
# self.mark.mark[:-1] = tanh_func(atanh_mark.detach())
# trigger = self.denoise(self.add_mark(torch.zeros_like(self.background), mark_alpha=1.0)[0])
# mark = trigger[:, start_h:end_h, start_w:end_w].clamp(0, 1)
# atanh_mark.data = (mark * (2 - 1e-5) - 1).atanh()
atanh_mark.requires_grad_(False)
self.trigger_mark = tanh_func(atanh_mark)
self.trigger_mark.detach_()
with torch.no_grad():
trigger_input = self.add_mark(self.background, mark_alpha=1.0)
print('Neuron Value After Preprocessing:',
f'{self.get_neuron_value(self.normalizer(trigger_input), neuron_idx):.5f}')
# def validate_fn(self, **kwargs) -> tuple[float, float]:
# if self.neuron_idx is not None:
# with torch.no_grad():
# trigger_input = self.add_mark(self.background, mark_alpha=1.0)
# print(f'Neuron Value: {self.get_neuron_value(trigger_input, self.neuron_idx):.5f}')
# return super().validate_fn(**kwargs)
def add_mark(self, x, mark_alpha=1.0):
return x + mark_alpha * self.trigger_mask * (self.trigger_mark - x)
@staticmethod
def denoise(img: torch.Tensor, weight: float = 1.0,
max_num_iter: int = 100, eps: float = 1e-3) -> torch.Tensor:
r"""Denoise image by calling :any:`skimage.restoration.denoise_tv_bregman`.
Warning:
This method is currently unused in :meth:`preprocess_mark()`
because no performance difference is observed.
Args:
img (torch.Tensor): Noisy image tensor with shape ``(C, H, W)``.
Returns:
torch.Tensor: Denoised image tensor with shape ``(C, H, W)``.
"""
if img.size(0) == 1:
img_np: np.ndarray = img[0].detach().cpu().numpy()
else:
img_np = img.detach().cpu().permute(1, 2, 0).contiguous().numpy()
denoised_img_np = skimage.restoration.denoise_tv_bregman(
img_np, weight=weight, max_num_iter=max_num_iter, eps=eps)
denoised_img = torch.from_numpy(denoised_img_np)
if denoised_img.dim() == 2:
denoised_img.unsqueeze_(0)
else:
denoised_img = denoised_img.permute(2, 0, 1).contiguous()
return img.to(device=img.device)
def retrain(self):
# Test settings
from utils import tools
args = self.args
test_set_dir = os.path.join('clean_set', self.args.dataset, 'test_split')
test_set_img_dir = os.path.join(test_set_dir, 'data')
test_set_label_path = os.path.join(test_set_dir, 'labels')
test_set = tools.IMG_Dataset(data_dir=test_set_img_dir,
label_path=test_set_label_path, transforms=self.data_transform)
test_set_loader = torch.utils.data.DataLoader(
test_set, batch_size=100, shuffle=False, worker_init_fn=tools.worker_init)
# Poison Transform for Testing
poison_transform = supervisor.get_poison_transform(poison_type=args.poison_type, dataset_name=args.dataset,
target_class=config.target_class[args.dataset], trigger_transform=self.data_transform,
is_normalized_input=True,
alpha=args.alpha if args.test_alpha is None else args.test_alpha,
trigger_name=args.trigger, args=args)
# Retraining settings
if self.args.dataset == 'cifar10':
full_train_set = datasets.CIFAR10(root=os.path.join(config.data_dir, 'cifar10'), train=True, download=True, transform=transforms.ToTensor())
self.data_transform_aug = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.247, 0.243, 0.261])
])
retrain_lr = 0.01
poison_ratio = 0.1
elif self.args.dataset == 'gtsrb':
full_train_set = datasets.GTSRB(root=os.path.join(config.data_dir, 'gtsrb'), split='train', download=False, transform=transforms.Compose([transforms.Resize((32, 32)), transforms.ToTensor()]))
self.data_transform_aug = transforms.Compose([
transforms.RandomRotation(15),
transforms.Normalize((0.3337, 0.3064, 0.3171), (0.2672, 0.2564, 0.2629))
])
retrain_lr = 0.001
poison_ratio = 0.1
else:
raise NotImplementedError()
train_data = DatasetPoison(1.0, full_dataset=full_train_set, transform=self.data_transform_aug, poison_ratio=poison_ratio, mark=self.trigger_mark.cpu(), mask=self.trigger_mask.cpu(), target_class=config.target_class[self.args.dataset])
train_loader = DataLoader(train_data, batch_size=128, shuffle=True, num_workers=32)
# val_set_dir = os.path.join('clean_set', self.args.dataset, 'clean_split')
# val_set_img_dir = os.path.join(val_set_dir, 'data')
# val_set_label_path = os.path.join(val_set_dir, 'clean_labels')
# val_set = IMG_Dataset(data_dir=val_set_img_dir, label_path=val_set_label_path, transforms=transforms.ToTensor())
# train_data = DatasetPoison(1.0, full_dataset=val_set, transform=self.data_transform_aug, poison_ratio=0.4, mark=self.trigger_mark.cpu(), mask=self.trigger_mask.cpu(), target_class=config.target_class[self.args.dataset])
# train_loader = DataLoader(train_data, batch_size=128, shuffle=True)
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(self.model.parameters(), lr=retrain_lr, momentum=self.momentum, weight_decay=self.weight_decay)
# optimizer = optim.Adam([p for p in self.model.parameters() if p.requires_grad], lr=0.001)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[3, 6])#, milestones=[3, 6])
# self.test(self.model)
tools.test(model=self.model, test_loader=test_set_loader, poison_test=True, poison_transform=poison_transform, num_classes=self.num_classes)
for epoch in range(1):
# Retrain
self.model.train()
# self.model.freeze_feature() # Standard trojannn only finetunes the last classifier layer, but leads to significant accuracy drop in our scenarios.
# To achieve negligible accuracy drop, we finetune the entire model instead.
preds = []
labels = []
for data, target in tqdm(train_loader):
optimizer.zero_grad()
data, target = data.cuda(), target.cuda() # train set batch
output = self.model(data)
preds.append(output.argmax(dim=1))
labels.append(target)
loss = criterion(output, target)
loss.backward()
optimizer.step()
preds = torch.cat(preds, dim=0)
labels = torch.cat(labels, dim=0)
train_acc = (torch.eq(preds, labels).int().sum()) / preds.shape[0]
print('\n<Retraining> Train Epoch: {} \tLoss: {:.6f}, Train Acc: {:.6f}, lr: {:.3f}'.format(epoch, loss.item(), train_acc, optimizer.param_groups[0]['lr']))
scheduler.step()
# self.test(self.model)
tools.test(model=self.model, test_loader=test_set_loader, poison_test=True, poison_transform=poison_transform, num_classes=self.num_classes)
save_path = supervisor.get_model_dir(args)
torch.save(self.model.state_dict(), save_path)
print(f"Saved TrojanNN to {save_path}.")
class DatasetPoison(Dataset):
def __init__(self, ratio, full_dataset=None, transform=None, poison_ratio=0, mark=None, mask=None, target_class=0):
self.dataset = self.random_split(full_dataset=full_dataset, ratio=ratio)
id_set = list(range(0, len(self.dataset)))
random.shuffle(id_set)
num_poison = int(len(self.dataset) * poison_ratio)
print("Poison num:", num_poison)
self.poison_indices = id_set[:num_poison]
self.mark = mark
self.mask = mask
self.target_class = target_class
# pt = 0
# from torchvision.utils import save_image
# for i in range(len(self.dataset)):
# if pt < num_poison and poison_indices[pt] == i:
# img, gt = self.dataset[i]
# img = img * (1 - mask) + mark * mask
# pt += 1
# if i == poison_indices[0]: save_image(img, 'a.png')
# save_image(self.dataset[poison_indices[0]][0], 'a1.png')
self.transform = transform
self.dataLen = len(self.dataset)
def __getitem__(self, index):
image = self.dataset[index][0]
label = torch.tensor(self.dataset[index][1])
if index in self.poison_indices:
image = image + (self.mark - image) * self.mask
label = torch.tensor(self.target_class)
if self.transform:
image = self.transform(image)
return image, label
def __len__(self):
return self.dataLen
def random_split(self, full_dataset, ratio):
print('full_train:', len(full_dataset))
train_size = int(ratio * len(full_dataset))
drop_size = len(full_dataset) - train_size
train_dataset, drop_dataset = random_split(full_dataset, [train_size, drop_size])
print('train_size:', len(train_dataset), 'drop_size:', len(drop_dataset))
return train_dataset
class poison_transform():
def __init__(self, img_size, trigger, mask, target_class = 0):
self.img_size = img_size
self.trigger = trigger
self.mask = mask
self.target_class = target_class # by default : target_class = 0
def transform(self, data, labels):
data = data.clone()
labels = labels.clone()
# transform clean samples to poison samples
labels[:] = self.target_class
data = data + self.mask*(self.trigger - data)
return data, labels