-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict_joint.py
333 lines (254 loc) · 10.5 KB
/
predict_joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Runs MultiNet on a whole bunch of input images.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import logging
import os
import sys
# configure logging
if 'TV_IS_DEV' in os.environ and os.environ['TV_IS_DEV']:
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',
level=logging.INFO,
stream=sys.stdout)
else:
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',
level=logging.INFO,
stream=sys.stdout)
# https://github.com/tensorflow/tensorflow/issues/2034#issuecomment-220820070
import scipy as scp
import scipy.misc
import numpy as np
import tensorflow as tf
import time
flags = tf.app.flags
FLAGS = flags.FLAGS
sys.path.insert(1, os.path.realpath('incl'))
import train as united_train
import tensorvision.train as train
import tensorvision.utils as utils
import tensorvision.core as core
from PIL import Image, ImageDraw, ImageFont
flags.DEFINE_string('data',
"data_road/testing.txt",
'Text file containing images.')
flags.DEFINE_bool('speed_test',
False,
'Only measure inference speed.')
res_folder = 'results'
def _output_generator(sess, tensor_list, image_pl, data_file,
process_image=lambda x: x):
image_dir = os.path.dirname(data_file)
with open(data_file) as file:
for datum in file:
datum = datum.rstrip()
image_file = datum.split(" ")[0]
image_file = os.path.join(image_dir, image_file)
image = scp.misc.imread(image_file)
image = process_image(image)
feed_dict = {image_pl: image}
start_time = time.time()
output = sess.run(tensor_list, feed_dict=feed_dict)
yield image_file, output
def eval_runtime(sess, subhypes, image_pl, eval_list, data_file):
logging.info(' ')
logging.info('Evaluation complete. Measuring runtime.')
image_dir = os.path.dirname(data_file)
with open(data_file) as file:
for datum in file:
datum = datum.rstrip()
image_file = datum.split(" ")[0]
image_file = os.path.join(image_dir, image_file)
image = scp.misc.imread(image_file)
image = process_image(subhypes, image)
feed = {image_pl: image}
for i in xrange(100):
_ = sess.run(eval_list, feed_dict=feed)
start_time = time.time()
for i in xrange(100):
_ = sess.run(eval_list, feed_dict=feed)
dt = (time.time() - start_time)/100
logging.info('Joined inference can be conducted at the following rates on'
' your machine:')
logging.info('Speed (msec): %f ', 1000*dt)
logging.info('Speed (fps): %f ', 1/dt)
return dt
def test_constant_input(subhypes):
road_input_conf = subhypes['road']['jitter']
seg_input_conf = subhypes['segmentation']['jitter']
car_input_conf = subhypes['detection']
gesund = True \
and road_input_conf['image_width'] == seg_input_conf['image_width'] \
and road_input_conf['image_height'] == seg_input_conf['image_height'] \
and car_input_conf['image_width'] == seg_input_conf['image_width'] \
and car_input_conf['image_height'] == seg_input_conf['image_height'] \
if not gesund:
logging.error("The different tasks are training"
"using different resolutions. Please retrain all tasks,"
"using the same resolution.")
exit(1)
return
def test_segmentation_input(subhypes):
if not subhypes['segmentation']['jitter']['reseize_image']:
logging.error('')
logging.error("Issue with Segmentation input handling.")
logging.error("Segmentation input will be resized during this"
"evaluation, but was not resized during training.")
logging.error("This will lead to bad results.")
logging.error("To use this script please train segmentation using"
"the configuration:.")
logging.error("""
{
"jitter": {
"reseize_image": true,
"image_height" : 384,
"image_width" : 1248,
},
}""")
logging.error("Alternatively implement evaluation using non-resized"
" input.")
exit(1)
return
def road_draw(image, highway):
im = Image.fromarray(image.astype('uint8'))
draw = ImageDraw.Draw(im)
fnt = ImageFont.truetype('FreeMono/FreeMonoBold.ttf', 40)
shape = image.shape
if highway:
draw.text((65, 10), "Highway",
font=fnt, fill=(255, 255, 0, 255))
draw.ellipse([10, 10, 55, 55], fill=(255, 255, 0, 255),
outline=(255, 255, 0, 255))
else:
draw.text((65, 10), "minor road",
font=fnt, fill=(255, 0, 0, 255))
draw.ellipse([10, 10, 55, 55], fill=(255, 0, 0, 255),
outline=(255, 0, 0, 255))
return np.array(im).astype('float32')
def run_eval(load_out, output_folder, data_file):
meta_hypes, subhypes, submodules, decoded_logits, sess, image_pl = load_out
assert(len(meta_hypes['model_list']) == 3)
# inf_out['pred_boxes_new'], inf_out['pred_confidences']
seg_softmax = decoded_logits['segmentation']['softmax']
pred_boxes_new = decoded_logits['detection']['pred_boxes_new']
pred_confidences = decoded_logits['detection']['pred_confidences']
road_softmax = decoded_logits['road']['softmax'][0]
eval_list = [seg_softmax, pred_boxes_new, pred_confidences, road_softmax]
def my_process(image):
return process_image(subhypes, image)
if FLAGS.speed_test:
eval_runtime(sess, subhypes, image_pl, eval_list, data_file)
exit(0)
test_constant_input(subhypes)
test_segmentation_input(subhypes)
import utils.train_utils as dec_utils
gen = _output_generator(sess, eval_list, image_pl, data_file, my_process)
for image_file, output in gen:
image = scp.misc.imread(image_file)
image = process_image(subhypes, image)
shape = image.shape
seg_softmax, pred_boxes_new, pred_confidences, road_softmax = output
# Create Segmentation Overlay
shape = image.shape
seg_softmax = seg_softmax[:, 1].reshape(shape[0], shape[1])
hard = seg_softmax > 0.5
overlay_image = utils.fast_overlay(image, hard)
# Draw Detection Boxes
new_img, rects = dec_utils.add_rectangles(
subhypes['detection'], [overlay_image], pred_confidences,
pred_boxes_new, show_removed=False,
use_stitching=True, rnn_len=subhypes['detection']['rnn_len'],
min_conf=0.50, tau=subhypes['detection']['tau'])
# Draw road classification
highway = (np.argmax(output[0][0]) == 0)
new_img = road_draw(new_img, highway)
# Save image file
im_name = os.path.basename(image_file)
new_im_file = os.path.join(output_folder, im_name)
im_name = os.path.basename(image_file)
new_im_file = os.path.join(output_folder, im_name)
scp.misc.imsave(new_im_file, new_img)
logging.info("Plotting file: {}".format(new_im_file))
eval_runtime(sess, subhypes, image_pl, eval_list, data_file)
exit(0)
def process_image(subhypes, image):
hypes = subhypes['road']
shape = image.shape
image_height = hypes['jitter']['image_height']
image_width = hypes['jitter']['image_width']
assert(image_height >= shape[0])
assert(image_width >= shape[1])
image = scp.misc.imresize(image, (image_height,
image_width, 3),
interp='cubic')
return image
def load_united_model(logdir):
subhypes = {}
subgraph = {}
submodules = {}
subqueues = {}
first_iter = True
meta_hypes = utils.load_hypes_from_logdir(logdir, subdir="")
for model in meta_hypes['models']:
subhypes[model] = utils.load_hypes_from_logdir(logdir, subdir=model)
hypes = subhypes[model]
hypes['dirs']['output_dir'] = meta_hypes['dirs']['output_dir']
hypes['dirs']['image_dir'] = meta_hypes['dirs']['image_dir']
submodules[model] = utils.load_modules_from_logdir(logdir,
dirname=model,
postfix=model)
modules = submodules[model]
image_pl = tf.placeholder(tf.float32)
image = tf.expand_dims(image_pl, 0)
decoded_logits = {}
for model in meta_hypes['models']:
hypes = subhypes[model]
modules = submodules[model]
optimizer = modules['solver']
with tf.name_scope('Validation_%s' % model):
reuse = {True: False, False: True}[first_iter]
scope = tf.get_variable_scope()
with tf.variable_scope(scope, reuse=reuse):
logits = modules['arch'].inference(hypes, image, train=False)
decoded_logits[model] = modules['objective'].decoder(hypes, logits,
train=False)
first_iter = False
sess = tf.Session()
saver = tf.train.Saver()
cur_step = core.load_weights(logdir, sess, saver)
return meta_hypes, subhypes, submodules, decoded_logits, sess, image_pl
def main(_):
utils.set_gpus_to_use()
logdir = FLAGS.logdir
data_file = FLAGS.data
if logdir is None:
logging.error('Usage python predict_joint --logdir /path/to/logdir'
'--data /path/to/data/txt')
exit(1)
output_folder = os.path.join(logdir, res_folder)
if not os.path.exists(output_folder):
os.mkdir(output_folder)
logdir = logdir
utils.load_plugins()
if 'TV_DIR_DATA' in os.environ:
data_file = os.path.join(os.environ['TV_DIR_DATA'], data_file)
else:
data_file = os.path.join('DATA', data_file)
if not os.path.exists(data_file):
logging.error('Please provide a valid data_file.')
logging.error('Use --data_file')
exit(1)
if 'TV_DIR_RUNS' in os.environ:
os.environ['TV_DIR_RUNS'] = os.path.join(os.environ['TV_DIR_RUNS'],
'UnitedVision2')
logging_file = os.path.join(output_folder, "analysis.log")
utils.create_filewrite_handler(logging_file, mode='a')
load_out = load_united_model(logdir)
run_eval(load_out, output_folder, data_file)
# stopping input Threads
if __name__ == '__main__':
tf.app.run()