-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathdemo.py
115 lines (107 loc) · 5.22 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright (C) 2019 Chao Wen, Yinda Zhang, Zhuwen Li, Yanwei Fu
# All rights reserved.
# This code is licensed under BSD 3-Clause License.
import tensorflow as tf
import tflearn
import numpy as np
import pprint
import pickle
import shutil
import os
from modules.models_mvp2m import MeshNetMVP2M as MVP2MNet
from modules.models_p2mpp import MeshNet as P2MPPNet
from modules.config import execute
# from utils.dataloader import DataFetcher
from utils.tools import construct_feed_dict, load_demo_image
# from utils.visualize import plot_scatter
def main(cfg):
os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
# ---------------------------------------------------------------
# Set random seed
print('=> pre-porcessing')
seed = 123
np.random.seed(seed)
tf.set_random_seed(seed)
# ---------------------------------------------------------------
num_blocks = 3
num_supports = 2
placeholders = {
'features': tf.placeholder(tf.float32, shape=(None, 3), name='features'),
'img_inp': tf.placeholder(tf.float32, shape=(3, 224, 224, 3), name='img_inp'),
'labels': tf.placeholder(tf.float32, shape=(None, 6), name='labels'),
'support1': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'support2': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'support3': [tf.sparse_placeholder(tf.float32) for _ in range(num_supports)],
'faces': [tf.placeholder(tf.int32, shape=(None, 4)) for _ in range(num_blocks)],
'edges': [tf.placeholder(tf.int32, shape=(None, 2)) for _ in range(num_blocks)],
'lape_idx': [tf.placeholder(tf.int32, shape=(None, 10)) for _ in range(num_blocks)], # for laplace term
'pool_idx': [tf.placeholder(tf.int32, shape=(None, 2)) for _ in range(num_blocks - 1)], # for unpooling
'dropout': tf.placeholder_with_default(0., shape=()),
'num_features_nonzero': tf.placeholder(tf.int32),
'sample_coord': tf.placeholder(tf.float32, shape=(43, 3), name='sample_coord'),
'cameras': tf.placeholder(tf.float32, shape=(3, 5), name='Cameras'),
'faces_triangle': [tf.placeholder(tf.int32, shape=(None, 3)) for _ in range(num_blocks)],
'sample_adj': [tf.placeholder(tf.float32, shape=(43, 43)) for _ in range(num_supports)],
}
# step = cfg.test_epoch
# root_dir = os.path.join(cfg.save_path, cfg.name)
model1_dir = os.path.join('results', 'coarse_mvp2m', 'models')
model2_dir = os.path.join('results', 'refine_p2mpp', 'models')
# predict_dir = os.path.join(cfg.save_path, cfg.name, 'predict', str(step))
# if not os.path.exists(predict_dir):
# os.makedirs(predict_dir)
# print('==> make predict_dir {}'.format(predict_dir))
# -------------------------------------------------------------------
print('=> build model')
# Define model
model1 = MVP2MNet(placeholders, logging=True, args=cfg)
model2 = P2MPPNet(placeholders, logging=True, args=cfg)
# ---------------------------------------------------------------
print('=> load data')
demo_img_list = ['data/demo/plane1.png',
'data/demo/plane2.png',
'data/demo/plane3.png']
img_all_view = load_demo_image(demo_img_list)
cameras = np.loadtxt('data/demo/cameras.txt')
# data = DataFetcher(file_list=cfg.test_file_path, data_root=cfg.test_data_path, image_root=cfg.test_image_path, is_val=True)
# data.setDaemon(True)
# data.start()
# ---------------------------------------------------------------
print('=> initialize session')
sesscfg = tf.ConfigProto()
sesscfg.gpu_options.allow_growth = True
sesscfg.allow_soft_placement = True
sess = tf.Session(config=sesscfg)
sess.run(tf.global_variables_initializer())
# sess2 = tf.Session(config=sesscfg)
# sess2.run(tf.global_variables_initializer())
# ---------------------------------------------------------------
model1.load(sess=sess, ckpt_path=model1_dir, step=50)
model2.load(sess=sess, ckpt_path=model2_dir, step=10)
# exit(0)
# ---------------------------------------------------------------
# Load init ellipsoid and info about vertices and edges
pkl = pickle.load(open('data/iccv_p2mpp.dat', 'rb'))
# Construct Feed dict
feed_dict = construct_feed_dict(pkl, placeholders)
# ---------------------------------------------------------------
tflearn.is_training(False, sess)
print('=> start test stage 1')
feed_dict.update({placeholders['img_inp']: img_all_view})
feed_dict.update({placeholders['labels']: np.zeros([10, 6])})
feed_dict.update({placeholders['cameras']: cameras})
stage1_out3 = sess.run(model1.output3, feed_dict=feed_dict)
print('=> start test stage 2')
feed_dict.update({placeholders['features']: stage1_out3})
vert = sess.run(model2.output2l, feed_dict=feed_dict)
vert = np.hstack((np.full([vert.shape[0],1], 'v'), vert))
face = np.loadtxt('data/face3.obj', dtype='|S32')
mesh = np.vstack((vert, face))
pred_path = 'data/demo/predict.obj'
np.savetxt(pred_path, mesh, fmt='%s', delimiter=' ')
print('=> save to {}'.format(pred_path))
if __name__ == '__main__':
print('=> set config')
args=execute()
# pprint.pprint(vars(args))
main(args)