Skip to content

Commit 3369756

Browse files
authored
Fix critical numbered list formatting issues (#1718)
Fixed 23 high-severity list formatting issues across 15 files: - Split inline bold text that should be on separate lines - Fixed sub-bullet indentation (2 spaces → 3 spaces for proper nesting) - Properly indented code blocks under list items - Fixed continuation text indentation Most affected files: - platform/hosting/self-managed/azure-tf.mdx - guides/launch/setup-launch-sagemaker.mdx - Various ja/ and ko/ translations These formatting issues were breaking list rendering in Mintlify and making documentation harder to read. Issues likely predate the migration.
1 parent 320f34c commit 3369756

File tree

15 files changed

+757
-734
lines changed

15 files changed

+757
-734
lines changed

guides/launch/setup-launch-sagemaker.mdx

Lines changed: 125 additions & 121 deletions
Original file line numberDiff line numberDiff line change
@@ -50,94 +50,94 @@ Make a note of the ARNs for these resources. You will need the ARNs when you def
5050

5151
<Tabs>
5252
<Tab title="Agent submits pre-built Docker image">
53-
```json
54-
{
55-
"Version": "2012-10-17",
56-
"Statement": [
57-
{
58-
"Effect": "Allow",
59-
"Action": [
60-
"logs:DescribeLogStreams",
61-
"SageMaker:AddTags",
62-
"SageMaker:CreateTrainingJob",
63-
"SageMaker:DescribeTrainingJob"
64-
],
65-
"Resource": "arn:aws:sagemaker:<region>:<account-id>:*"
66-
},
67-
{
68-
"Effect": "Allow",
69-
"Action": "iam:PassRole",
70-
"Resource": "arn:aws:iam::<account-id>:role/<RoleArn-from-queue-config>"
71-
},
72-
{
73-
"Effect": "Allow",
74-
"Action": "kms:CreateGrant",
75-
"Resource": "<ARN-OF-KMS-KEY>",
76-
"Condition": {
77-
"StringEquals": {
78-
"kms:ViaService": "SageMaker.<region>.amazonaws.com",
79-
"kms:GrantIsForAWSResource": "true"
80-
}
81-
}
82-
}
83-
]
84-
}
85-
```
53+
```json
54+
{
55+
"Version": "2012-10-17",
56+
"Statement": [
57+
{
58+
"Effect": "Allow",
59+
"Action": [
60+
"logs:DescribeLogStreams",
61+
"SageMaker:AddTags",
62+
"SageMaker:CreateTrainingJob",
63+
"SageMaker:DescribeTrainingJob"
64+
],
65+
"Resource": "arn:aws:sagemaker:<region>:<account-id>:*"
66+
},
67+
{
68+
"Effect": "Allow",
69+
"Action": "iam:PassRole",
70+
"Resource": "arn:aws:iam::<account-id>:role/<RoleArn-from-queue-config>"
71+
},
72+
{
73+
"Effect": "Allow",
74+
"Action": "kms:CreateGrant",
75+
"Resource": "<ARN-OF-KMS-KEY>",
76+
"Condition": {
77+
"StringEquals": {
78+
"kms:ViaService": "SageMaker.<region>.amazonaws.com",
79+
"kms:GrantIsForAWSResource": "true"
80+
}
81+
}
82+
}
83+
]
84+
}
85+
```
8686
</Tab>
8787
<Tab title="Agent builds and submits Docker image">
88-
```json
89-
{
90-
"Version": "2012-10-17",
91-
"Statement": [
92-
{
93-
"Effect": "Allow",
94-
"Action": [
95-
"logs:DescribeLogStreams",
96-
"SageMaker:AddTags",
97-
"SageMaker:CreateTrainingJob",
98-
"SageMaker:DescribeTrainingJob"
99-
],
100-
"Resource": "arn:aws:sagemaker:<region>:<account-id>:*"
101-
},
102-
{
103-
"Effect": "Allow",
104-
"Action": "iam:PassRole",
105-
"Resource": "arn:aws:iam::<account-id>:role/<RoleArn-from-queue-config>"
106-
},
88+
```json
89+
{
90+
"Version": "2012-10-17",
91+
"Statement": [
92+
{
93+
"Effect": "Allow",
94+
"Action": [
95+
"logs:DescribeLogStreams",
96+
"SageMaker:AddTags",
97+
"SageMaker:CreateTrainingJob",
98+
"SageMaker:DescribeTrainingJob"
99+
],
100+
"Resource": "arn:aws:sagemaker:<region>:<account-id>:*"
101+
},
102+
{
103+
"Effect": "Allow",
104+
"Action": "iam:PassRole",
105+
"Resource": "arn:aws:iam::<account-id>:role/<RoleArn-from-queue-config>"
106+
},
107+
{
108+
"Effect": "Allow",
109+
"Action": [
110+
"ecr:CreateRepository",
111+
"ecr:UploadLayerPart",
112+
"ecr:PutImage",
113+
"ecr:CompleteLayerUpload",
114+
"ecr:InitiateLayerUpload",
115+
"ecr:DescribeRepositories",
116+
"ecr:DescribeImages",
117+
"ecr:BatchCheckLayerAvailability",
118+
"ecr:BatchDeleteImage"
119+
],
120+
"Resource": "arn:aws:ecr:<region>:<account-id>:repository/<repository>"
121+
},
122+
{
123+
"Effect": "Allow",
124+
"Action": "ecr:GetAuthorizationToken",
125+
"Resource": "*"
126+
},
107127
{
108-
"Effect": "Allow",
109-
"Action": [
110-
"ecr:CreateRepository",
111-
"ecr:UploadLayerPart",
112-
"ecr:PutImage",
113-
"ecr:CompleteLayerUpload",
114-
"ecr:InitiateLayerUpload",
115-
"ecr:DescribeRepositories",
116-
"ecr:DescribeImages",
117-
"ecr:BatchCheckLayerAvailability",
118-
"ecr:BatchDeleteImage"
119-
],
120-
"Resource": "arn:aws:ecr:<region>:<account-id>:repository/<repository>"
121-
},
122-
{
123-
"Effect": "Allow",
124-
"Action": "ecr:GetAuthorizationToken",
125-
"Resource": "*"
126-
},
127-
{
128-
"Effect": "Allow",
129-
"Action": "kms:CreateGrant",
130-
"Resource": "<ARN-OF-KMS-KEY>",
131-
"Condition": {
132-
"StringEquals": {
133-
"kms:ViaService": "SageMaker.<region>.amazonaws.com",
134-
"kms:GrantIsForAWSResource": "true"
135-
}
136-
}
137-
}
138-
]
139-
}
140-
```
128+
"Effect": "Allow",
129+
"Action": "kms:CreateGrant",
130+
"Resource": "<ARN-OF-KMS-KEY>",
131+
"Condition": {
132+
"StringEquals": {
133+
"kms:ViaService": "SageMaker.<region>.amazonaws.com",
134+
"kms:GrantIsForAWSResource": "true"
135+
}
136+
}
137+
}
138+
]
139+
}
140+
```
141141
</Tab>
142142
</Tabs>
143143

@@ -176,22 +176,22 @@ Next, create a queue in the W&B App that uses SageMaker as its compute resource:
176176
5. Provide a name for your queue in the **Name** field.
177177
6. Select **SageMaker** as the **Resource**.
178178
7. Within the **Configuration** field, provide information about your SageMaker job. By default, W&B will populate a YAML and JSON `CreateTrainingJob` request body:
179-
```json
180-
{
181-
"RoleArn": "<REQUIRED>",
182-
"ResourceConfig": {
183-
"InstanceType": "ml.m4.xlarge",
184-
"InstanceCount": 1,
185-
"VolumeSizeInGB": 2
186-
},
187-
"OutputDataConfig": {
188-
"S3OutputPath": "<REQUIRED>"
189-
},
190-
"StoppingCondition": {
191-
"MaxRuntimeInSeconds": 3600
192-
}
193-
}
194-
```
179+
```json
180+
{
181+
"RoleArn": "<REQUIRED>",
182+
"ResourceConfig": {
183+
"InstanceType": "ml.m4.xlarge",
184+
"InstanceCount": 1,
185+
"VolumeSizeInGB": 2
186+
},
187+
"OutputDataConfig": {
188+
"S3OutputPath": "<REQUIRED>"
189+
},
190+
"StoppingCondition": {
191+
"MaxRuntimeInSeconds": 3600
192+
}
193+
}
194+
```
195195
You must at minimum specify:
196196

197197
- `RoleArn` : ARN of the SageMaker execution IAM role (see [prerequisites](#prerequisites)). Not to be confused with the launch **agent** IAM role.
@@ -237,33 +237,37 @@ Navigate to **Instances** within the left panel of the EC2 Dashboard on AWS. Ens
237237
1. Select **Connect**.
238238
2. Select the **SSH client** tab and following the instructions outlined to connect to your EC2 instance.
239239
3. Within your EC2 instance, install the following packages:
240-
```bash
241-
sudo yum install python311 -y && python3 -m ensurepip --upgrade && pip3 install wandb && pip3 install wandb[launch]
242-
```
240+
```bash
241+
sudo yum install python311 -y && python3 -m ensurepip --upgrade && pip3 install wandb && pip3 install wandb[launch]
242+
```
243243
4. Next, install and start Docker within your EC2 instance:
244-
```bash
245-
sudo yum update -y && sudo yum install -y docker python3 && sudo systemctl start docker && sudo systemctl enable docker && sudo usermod -a -G docker ec2-user
246-
247-
newgrp docker
248-
```
244+
```bash
245+
sudo yum update -y && \
246+
sudo yum install -y docker python3 && \
247+
sudo systemctl start docker && \
248+
sudo systemctl enable docker && \
249+
sudo usermod -a -G docker ec2-user
250+
251+
newgrp docker
252+
```
249253

250254
Now you can proceed to setting up the Launch agent config.
251255
</Tab>
252256
<Tab title="Local machine">
253257
Use the AWS config files located at `~/.aws/config` and `~/.aws/credentials` to associate a role with an agent that is polling on a local machine. Provide the IAM role ARN that you created for the launch agent in the previous step.
254258

255-
```yaml title="~/.aws/config"
256-
[profile SageMaker-agent]
257-
role_arn = arn:aws:iam::<account-id>:role/<agent-role-name>
258-
source_profile = default
259-
```
260-
261-
```yaml title="~/.aws/credentials"
262-
[default]
263-
aws_access_key_id=<access-key-id>
264-
aws_secret_access_key=<secret-access-key>
265-
aws_session_token=<session-token>
266-
```
259+
```yaml title="~/.aws/config"
260+
[profile SageMaker-agent]
261+
role_arn = arn:aws:iam::<account-id>:role/<agent-role-name>
262+
source_profile = default
263+
```
264+
265+
```yaml title="~/.aws/credentials"
266+
[default]
267+
aws_access_key_id=<access-key-id>
268+
aws_secret_access_key=<secret-access-key>
269+
aws_session_token=<session-token>
270+
```
267271

268272
Note that session tokens have a [max length](https://docs.aws.amazon.com/cli/latest/reference/sts/get-session-token.html#description) of 1 hour or 3 days depending on the principal they are associated with.
269273
</Tab>

guides/launch/walkthrough.mdx

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -55,9 +55,9 @@ Before you get started, ensure you have satisfied the following prerequisites:
5555
1. Sign up for an account at https://wandb.ai/site and then log in to your W&B account.
5656
2. This walkthrough requires terminal access to a machine with a working Docker CLI and engine. See the [Docker installation guide](https://docs.docker.com/engine/install/) for more information.
5757
3. Install W&B Python SDK version `0.17.1` or higher:
58-
```bash
59-
pip install wandb>=0.17.1
60-
```
58+
```bash
59+
pip install wandb>=0.17.1
60+
```
6161
4. Within your terminal, execute `wandb login` or set the `WANDB_API_KEY` environment variable to authenticate with W&B.
6262

6363
<Tabs>
@@ -69,9 +69,9 @@ Within your terminal execute:
6969
```
7070
</Tab>
7171
<Tab title="Environment variable">
72-
```bash
73-
WANDB_API_KEY=<your-api-key>
74-
```
72+
```bash
73+
WANDB_API_KEY=<your-api-key>
74+
```
7575

7676
Replace `<your-api-key>` with your W&B API key.
7777
</Tab>
@@ -114,24 +114,24 @@ Code not versioned in a git repository can be launched by specifying a local dir
114114

115115
Create an empty directory and add a Python script named `train.py` with the following content:
116116

117-
```python
118-
import wandb
119-
120-
with wandb.init() as run:
121-
run.log({"hello": "world"})
122-
```
117+
```python
118+
import wandb
119+
120+
with wandb.init() as run:
121+
run.log({"hello": "world"})
122+
```
123123

124124
Add a file `requirements.txt` with the following content:
125125

126-
```text
127-
wandb>=0.17.1
128-
```
126+
```text
127+
wandb>=0.17.1
128+
```
129129

130130
From within the directory, run the following command:
131131

132-
```bash
133-
wandb launch --uri . --job-name hello-world-code --project launch-quickstart --entry-point "python train.py"
134-
```
132+
```bash
133+
wandb launch --uri . --job-name hello-world-code --project launch-quickstart --entry-point "python train.py"
134+
```
135135

136136
The command does the following:
137137
1. Log the contents of the current directory to W&B as a Code Artifact.
@@ -188,6 +188,6 @@ This submits the job to the queue. The agent polling this queue picks up and exe
188188

189189
The `wandb launch` command can push jobs to the queue directly by specifying the `--queue` argument. For example, to submit the hello-world container job to the queue, run the following command:
190190

191-
```bash
192-
wandb launch --docker-image wandb/job_hello_world:main --project launch-quickstart --queue <queue-name>
193-
```
191+
```bash
192+
wandb launch --docker-image wandb/job_hello_world:main --project launch-quickstart --queue <queue-name>
193+
```

0 commit comments

Comments
 (0)