forked from nejumi/heron
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_eval.py
70 lines (59 loc) · 2.34 KB
/
run_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import asyncio
import os
import hydra
from omegaconf import DictConfig, OmegaConf
import wandb
import pandas as pd
from src.plugin_manager import PluginManager
from src.common_evaluation import evaluate_benchmark
from src.caching import disk_cache
@hydra.main(config_path="configs", config_name="config", version_base="1.3")
def main(cfg: DictConfig) -> None:
asyncio.run(async_main(cfg))
async def async_main(cfg: DictConfig) -> None:
# Convert Hydra configuration to dictionary
config_dict = OmegaConf.to_container(cfg, resolve=True, throw_on_missing=True)
print("Debug: Full config")
print(OmegaConf.to_yaml(cfg))
wandb.init(
project=cfg.wandb.project,
entity=cfg.wandb.entity,
config=config_dict,
name=cfg.wandb.run_name
)
config_dict = dict(wandb.config)
# Convert Python dictionary to DictConfig
cfg = OmegaConf.create(config_dict)
plugin_manager = PluginManager("plugins")
adapter = plugin_manager.get_adapter(
cfg.model.pretrained_model_name_or_path,
f"cuda:{cfg.device_id}",
cfg.generation.args,
)
# Iterate through each benchmark defined in the configuration
for benchmark_name, benchmark_config in cfg.benchmarks.items():
print(f"Debug: Processing benchmark: {benchmark_name}")
print(f"Debug: Benchmark config: {OmegaConf.to_yaml(benchmark_config)}")
results = await evaluate_benchmark(adapter, benchmark_name)
wandb.log({f"{benchmark_name}_results": results})
# Log final results
lb_dict = wandb.run.summary.get('lb_dict', {})
lb_df = pd.DataFrame(columns=lb_dict.keys(), data=[lb_dict.values()])
if not lb_df.empty:
# Create a list of benchmark names
benchmark_names = cfg.benchmarks.keys()
# Create a dataframe for radar chart
radar_df = lb_df.drop(['model_name'] + [f"ave_{name}" for name in benchmark_names], axis=1)
radar_df = radar_df.T.reset_index()
radar_df.columns = ['category', 'score']
radar_df = radar_df.sort_values('category')
# Log to wandb
wandb.log({
"lb_table": wandb.Table(dataframe=lb_df),
"radar_table": wandb.Table(dataframe=radar_df)
})
else:
print("Warning: lb_df is empty. Cannot log results.")
wandb.finish()
if __name__ == "__main__":
main()