From a62fc17a8249994ad304df914fe543e06558ebe7 Mon Sep 17 00:00:00 2001 From: ben sherman Date: Tue, 9 Jul 2024 22:10:08 +0000 Subject: [PATCH] add llama2-qlora job --- jobs/torchtune/Dockerfile.wandb | 7 ++ jobs/torchtune/helpers.py | 60 ++++++++++++++ .../llama3_8b_qlora_single_device.py | 81 +++++++++++++++++++ .../mistral_7b_qlora_single_device.py | 81 +++++++++++++++++++ jobs/torchtune/requirements.txt | 4 + 5 files changed, 233 insertions(+) create mode 100644 jobs/torchtune/Dockerfile.wandb create mode 100644 jobs/torchtune/helpers.py create mode 100644 jobs/torchtune/llama3_8b_qlora_single_device.py create mode 100644 jobs/torchtune/mistral_7b_qlora_single_device.py create mode 100644 jobs/torchtune/requirements.txt diff --git a/jobs/torchtune/Dockerfile.wandb b/jobs/torchtune/Dockerfile.wandb new file mode 100644 index 0000000..b4e8df2 --- /dev/null +++ b/jobs/torchtune/Dockerfile.wandb @@ -0,0 +1,7 @@ +FROM pytorch/pytorch:2.3.1-cuda12.1-cudnn8-runtime + +COPY requirements.txt /tmp/requirements.txt +RUN pip install -r /tmp/requirements.txt && rm /tmp/requirements.txt + +WORKDIR /wandb +COPY *.py /wandb/ \ No newline at end of file diff --git a/jobs/torchtune/helpers.py b/jobs/torchtune/helpers.py new file mode 100644 index 0000000..eac4a87 --- /dev/null +++ b/jobs/torchtune/helpers.py @@ -0,0 +1,60 @@ +import importlib.util +import site +import tempfile + +from huggingface_hub import snapshot_download +from omegaconf import DictConfig + + +def get_script_path(recipe_name: str): + """Get recipe script path from recipe name. + + Torchtune installs recipe files including configs and scripts to a `recipes` + directory in the site-packages directory. + """ + site_packages = site.getsitepackages()[0] + return site_packages + f"/recipes/{recipe_name}.py" + + +def load_recipe(recipe_name: str, recipe_class: str): + """Load recipe module given the recipe name and class class. + + This function loads the recipe module from the recipe script path and returns + the recipe. Direct import is not possible due to an exception raised in + `recipes/__init__.py`. + """ + script_path = get_script_path(recipe_name) + spec = importlib.util.spec_from_file_location(recipe_name, script_path) + module = importlib.util.module_from_spec(spec) + spec.loader.exec_module(module) + return module.__dict__[recipe_class] + + +def execute( + model: str, + recipe_name: str, + recipe_class: str, + config: DictConfig, +): + """Run a given recipe, model, and config. + + This function downloads the model snapshot, sets the model directory in the + config, creates a temporary output directory, and runs the recipe. The recipe + is loaded from the recipe script path and the recipe class is instantiated with + the config. + + Args: + model (str): Hugging Face model hub name. + recipe_name (str): Recipe name. + recipe_class (str): Recipe class name. + config (DictConfig): Recipe configuration. + """ + model_dir = snapshot_download(model) + config["model_dir"] = model_dir + with tempfile.TemporaryDirectory() as outdir: + config["output_dir"] = outdir + recipe_constructor = load_recipe(recipe_name, recipe_class) + recipe = recipe_constructor(config) + recipe.setup(config) + recipe.train() + recipe.cleanup() diff --git a/jobs/torchtune/llama3_8b_qlora_single_device.py b/jobs/torchtune/llama3_8b_qlora_single_device.py new file mode 100644 index 0000000..35588c8 --- /dev/null +++ b/jobs/torchtune/llama3_8b_qlora_single_device.py @@ -0,0 +1,81 @@ +from omegaconf import DictConfig + +from helpers import execute + +MODEL = "meta-llama/Meta-Llama-3-8B" +CONFIG = DictConfig( + { + "device": "cuda", + "dtype": "bf16", + "log_every_n_steps": None, + "seed": None, + "shuffle": False, + "compile": False, + "max_steps_per_epoch": None, + "gradient_accumulation_steps": 16, + "resume_from_checkpoint": False, + "enable_activation_checkpointing": True, + "epochs": 3, + "batch_size": 2, + "tokenizer": { + "_component_": "torchtune.models.llama3.llama3_tokenizer", + "path": "${model_dir}/original/tokenizer.model", + }, + "dataset": { + "_component_": "torchtune.datasets.alpaca_dataset", + "train_on_input": True, + }, + "model": { + "_component_": "torchtune.models.llama3.qlora_llama3_8b", + "lora_attn_modules": ["q_proj", "k_proj", "v_proj", "output_proj"], + "apply_lora_to_mlp": True, + "apply_lora_to_output": False, + "lora_rank": 8, + "lora_alpha": 16, + }, + "metric_logger": { + "_component_": "torchtune.utils.metric_logging.WandBLogger", + "log_dir": "${output_dir}", + }, + "optimizer": { + "_component_": "torch.optim.AdamW", + "lr": 3e-4, + "weight_decay": 0.01, + }, + "lr_scheduler": { + "_component_": "torchtune.modules.get_cosine_schedule_with_warmup", + "num_warmup_steps": 100, + }, + "loss": { + "_component_": "torch.nn.CrossEntropyLoss", + }, + "checkpointer": { + "_component_": "torchtune.utils.FullModelMetaCheckpointer", + "checkpoint_dir": "${model_dir}/original", + "checkpoint_files": [ + "consolidated.00.pth" + ], + "recipe_checkpoint": None, + "output_dir": "${output_dir}", + "model_type": "LLAMA3", + }, + "profiler": { + "_component_": "torchtune.utils.profiler", + "enabled": False, + "output_dir": "${output_dir}", + }, + } +) + + +def main(): + execute( + MODEL, + "lora_finetune_single_device", + "LoRAFinetuneRecipeSingleDevice", + CONFIG, + ) + + +if __name__ == "__main__": + main() diff --git a/jobs/torchtune/mistral_7b_qlora_single_device.py b/jobs/torchtune/mistral_7b_qlora_single_device.py new file mode 100644 index 0000000..01b31ac --- /dev/null +++ b/jobs/torchtune/mistral_7b_qlora_single_device.py @@ -0,0 +1,81 @@ +from omegaconf import DictConfig + +from helpers import execute + +MODEL = "mistralai/Mistral-7B-v0.1" +CONFIG = DictConfig( + { + "device": "cuda", + "dtype": "bf16", + "log_every_n_steps": None, + "seed": None, + "shuffle": False, + "compile": False, + "max_steps_per_epoch": None, + "gradient_accumulation_steps": 4, + "resume_from_checkpoint": False, + "enable_activation_checkpointing": True, + "epochs": 3, + "batch_size": 4, + "tokenizer": { + "_component_": "torchtune.models.mistral.mistral_tokenizer", + "path": "${model_dir}/tokenizer.model", + }, + "dataset": { + "_component_": "torchtune.datasets.alpaca_dataset", + "train_on_input": True, + }, + "model": { + "_component_": "torchtune.models.mistral.qlora_mistral_7b", + "lora_attn_modules": ["q_proj", "k_proj", "v_proj"], + "apply_lora_to_mlp": True, + "apply_lora_to_output": False, + "lora_rank": 64, + "lora_alpha": 16, + }, + "metric_logger": { + "_component_": "torchtune.utils.metric_logging.WandBLogger", + "log_dir": "${output_dir}", + }, + "optimizer": { + "_component_": "torch.optim.AdamW", + "lr": 2e-5, + }, + "lr_scheduler": { + "_component_": "torchtune.modules.get_cosine_schedule_with_warmup", + "num_warmup_steps": 100, + }, + "loss": { + "_component_": "torch.nn.CrossEntropyLoss", + }, + "checkpointer": { + "_component_": "torchtune.utils.FullModelHFCheckpointer", + "checkpoint_dir": "${model_dir}", + "checkpoint_files": [ + "pytorch_model-00001-of-00002.bin", + "pytorch_model-00002-of-00002.bin", + ], + "recipe_checkpoint": None, + "output_dir": "${output_dir}", + "model_type": "MISTRAL", + }, + "profiler": { + "_component_": "torchtune.utils.profiler", + "enabled": False, + "output_dir": "${output_dir}", + }, + } +) + + +def main(): + execute( + MODEL, + "lora_finetune_single_device", + "LoRAFinetuneRecipeSingleDevice", + CONFIG, + ) + + +if __name__ == "__main__": + main() diff --git a/jobs/torchtune/requirements.txt b/jobs/torchtune/requirements.txt new file mode 100644 index 0000000..fd9a079 --- /dev/null +++ b/jobs/torchtune/requirements.txt @@ -0,0 +1,4 @@ +torch==2.3.1 +torchao==0.1 +torchtune==0.1.1 +wandb \ No newline at end of file