forked from Skyendless/FaceRecognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
face.py
155 lines (125 loc) · 5.79 KB
/
face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# coding=utf-8
"""Face Detection and Recognition"""
# MIT License
#
# Copyright (c) 2017 François Gervais
#
# This is the work of David Sandberg and shanren7 remodelled into a
# high level container. It's an attempt to simplify the use of such
# technology and provide an easy to use facial recognition package.
#
# https://github.com/davidsandberg/facenet
# https://github.com/shanren7/real_time_face_recognition
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import pickle
import os
import cv2
import numpy as np
import tensorflow as tf
#from scipy import misc
from align import detect_face
import facenet
gpu_memory_fraction = 0.3
facenet_model_checkpoint = os.path.dirname(__file__) + "/model_checkpoints/20180402-114759"
classifier_model = os.path.dirname(__file__) + "/model_checkpoints/my_classifier.pkl"
debug = False
class Face:
def __init__(self):
self.name = None
self.bounding_box = None
self.image = None
self.container_image = None
self.embedding = None
class Recognition:
def __init__(self):
self.detect = Detection()
self.encoder = Encoder()
self.identifier = Identifier()
def add_identity(self, image, person_name):
faces = self.detect.find_faces(image)
if len(faces) == 1:
face = faces[0]
face.name = person_name
face.embedding = self.encoder.generate_embedding(face)
return faces
def identify(self, image):
faces = self.detect.find_faces(image)
for i, face in enumerate(faces):
if debug:
cv2.imshow("Face: " + str(i), face.image)
face.embedding = self.encoder.generate_embedding(face)
face.name = self.identifier.identify(face)
return faces
class Identifier:
def __init__(self):
with open(classifier_model, 'rb') as infile:
self.model, self.class_names = pickle.load(infile)
def identify(self, face):
if face.embedding is not None:
predictions = self.model.predict_proba([face.embedding])
best_class_indices = np.argmax(predictions, axis=1)
return self.class_names[best_class_indices[0]]
class Encoder:
def __init__(self):
self.sess = tf.Session()
with self.sess.as_default():
facenet.load_model(facenet_model_checkpoint)
def generate_embedding(self, face):
# Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
prewhiten_face = facenet.prewhiten(face.image)
# Run forward pass to calculate embeddings
feed_dict = {images_placeholder: [prewhiten_face], phase_train_placeholder: False}
return self.sess.run(embeddings, feed_dict=feed_dict)[0]
class Detection:
# face detection parameters
minsize = 20 # minimum size of face
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor
def __init__(self, face_crop_size=160, face_crop_margin=32):
self.pnet, self.rnet, self.onet = self._setup_mtcnn()
self.face_crop_size = face_crop_size
self.face_crop_margin = face_crop_margin
def _setup_mtcnn(self):
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
return detect_face.create_mtcnn(sess, None)
def find_faces(self, image):
faces = []
bounding_boxes, _ = detect_face.detect_face(image, self.minsize,
self.pnet, self.rnet, self.onet,
self.threshold, self.factor)
for bb in bounding_boxes:
face = Face()
face.container_image = image
face.bounding_box = np.zeros(4, dtype=np.int32)
img_size = np.asarray(image.shape)[0:2]
face.bounding_box[0] = np.maximum(bb[0] - self.face_crop_margin / 2, 0)
face.bounding_box[1] = np.maximum(bb[1] - self.face_crop_margin / 2, 0)
face.bounding_box[2] = np.minimum(bb[2] + self.face_crop_margin / 2, img_size[1])
face.bounding_box[3] = np.minimum(bb[3] + self.face_crop_margin / 2, img_size[0])
cropped = image[face.bounding_box[1]:face.bounding_box[3], face.bounding_box[0]:face.bounding_box[2], :]
face.image = cv2.resize(cropped, (self.face_crop_size, self.face_crop_size), interpolation=cv2.INTER_LINEAR)
faces.append(face)
return faces