-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathconv_stft.py
134 lines (111 loc) · 4.84 KB
/
conv_stft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from scipy.signal import get_window
import os
import soundfile as sf
def init_kernels(win_len, win_inc, fft_len, win_type=None, invers=False):
if win_type == 'None' or win_type is None:
window = np.ones(win_len)
else:
if win_type == "hanning sqrt":
window = get_window("hanning", win_len, fftbins=True) # win_len
window = np.sqrt(window)
else:
window = get_window(win_type, win_len, fftbins=True) # win_len
N = fft_len
fourier_basis = np.fft.rfft(np.eye(N))[:win_len]
# print(fourier_basis.shape)
real_kernel = np.real(fourier_basis)
imag_kernel = np.imag(fourier_basis)
kernel = np.concatenate([real_kernel, imag_kernel], 1).T # 514,400
# print(kernel.shape)
if invers:
kernel = np.linalg.pinv(kernel).T
# np.set_printoptions(threshold=1000000) # 全部输出
# print(kernel.shape)
# print(kernel[:5])
kernel = kernel * window
kernel = kernel[:, None, :]
return torch.from_numpy(kernel.astype(np.float32)), torch.from_numpy(window[None, :, None].astype(np.float32))
class ConvSTFT(nn.Module):
def __init__(self, win_len, win_inc, fft_len=None, win_type='hamming', feature_type='real'):
super(ConvSTFT, self).__init__()
if fft_len == None:
self.fft_len = np.int(2 ** np.ceil(np.log2(win_len)))
else:
self.fft_len = fft_len
kernel, _ = init_kernels(win_len, win_inc, self.fft_len, win_type)
# self.weight = nn.Parameter(kernel, requires_grad=(not fix))
self.register_buffer('weight', kernel)
self.feature_type = feature_type
self.stride = win_inc
self.win_len = win_len
self.dim = self.fft_len
def forward(self, inputs):
if inputs.dim() == 2:
inputs = torch.unsqueeze(inputs, 1)
# inputs = F.pad(inputs, [(self.win_len - self.stride), (self.win_len - self.stride)])
inputs = F.pad(inputs, [(self.win_len - self.stride), (self.win_len - self.stride)])
outputs = F.conv1d(inputs, self.weight, stride=self.stride)
if self.feature_type == 'complex':
return outputs # B,F,T
else:
dim = self.dim // 2 + 1
real = outputs[:, :dim, :]
imag = outputs[:, dim:, :]
mags = torch.sqrt(real ** 2 + imag ** 2)
phase = torch.atan2(imag, real)
return mags, phase
class ConviSTFT(nn.Module):
def __init__(self, win_len, win_inc, fft_len=None, win_type='hamming', feature_type='real', fix=True):
super(ConviSTFT, self).__init__()
if fft_len == None:
self.fft_len = np.int(2 ** np.ceil(np.log2(win_len)))
else:
self.fft_len = fft_len
kernel, window = init_kernels(win_len, win_inc, self.fft_len, win_type, invers=True)
# self.weight = nn.Parameter(kernel, requires_grad=(not fix))
self.register_buffer('weight', kernel)
self.feature_type = feature_type
self.win_type = win_type
self.win_len = win_len
self.stride = win_inc
self.stride = win_inc
self.dim = self.fft_len
self.register_buffer('window', window)
self.register_buffer('enframe', torch.eye(win_len)[:, None, :])
# t = self.window.repeat(1, 1, 10) ** 2
# coff = F.conv_transpose1d(t, self.enframe, stride=self.stride)
# print("coff", coff.size())
# drawer.plot_mesh(t[0])
# drawer.plot(coff[0][0][self.win_len - self.stride:-(self.win_len - self.stride)], "coff")
def forward(self, inputs, phase=None):
"""
inputs : [B, N+2, T] (complex spec) or [B, N//2+1, T] (mags)
phase: [B, N//2+1, T] (if not none)
"""
if phase is not None:
real = inputs * torch.cos(phase)
imag = inputs * torch.sin(phase)
inputs = torch.cat([real, imag], 1)
outputs = F.conv_transpose1d(inputs, self.weight, stride=self.stride)
# this is from torch-stft: https://github.com/pseeth/torch-stft
t = self.window.repeat(1, 1, inputs.size(-1)) ** 2
coff = F.conv_transpose1d(t, self.enframe, stride=self.stride)
outputs = outputs / (coff + 1e-8)
# outputs = torch.where(coff == 0, outputs, outputs/coff)
# print(outputs.size())
outputs_ = outputs[..., (self.win_len - self.stride):-(self.win_len - self.stride)]
# outputs_ = outputs[..., (self.win_len - self.stride):-(self.win_len - self.stride)]
#
return outputs_
def audiowrite(destpath, audio, sample_rate=16000):
'''Function to write audio'''
destpath = os.path.abspath(destpath)
destdir = os.path.dirname(destpath)
if not os.path.exists(destdir):
os.makedirs(destdir)
sf.write(destpath, audio, sample_rate)
return