-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluatuion_bi.py
190 lines (162 loc) · 6.15 KB
/
evaluatuion_bi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import math
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from PIL import Image
import numpy as np
from torch.autograd import Variable
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from data.dataloader import devdata_mask as devdata
from scipy import signal, ndimage
import gauss
parser = argparse.ArgumentParser()
parser.add_argument('--target_path', type=str, default='',
help='results')
parser.add_argument('--gt_path', type=str, default='',
help='labels')
parser.add_argument('--BI', type=str, default='True',
help='labels')
args = parser.parse_args()
sum_psnr = 0
sum_ssim = 0
sum_AGE = 0
sum_pCEPS = 0
sum_pEPS = 0
sum_mse = 0
count = 0
sum_time = 0.0
l1_loss = 0
img_path = args.target_path
gt_path = args.gt_path
def ssim(img1, img2, cs_map=False):
"""Return the Structural Similarity Map corresponding to input images img1
and img2 (images are assumed to be uint8)
This function attempts to mimic precisely the functionality of ssim.m a
MATLAB provided by the author's of SSIM
https://ece.uwaterloo.ca/~z70wang/research/ssim/ssim_index.m
"""
img1 = img1.astype(float)
img2 = img2.astype(float)
size = min(img1.shape[0], 11)
sigma = 1.5
window = gauss.fspecial_gauss(size, sigma)
K1 = 0.01
K2 = 0.03
L = 255 #bitdepth of image
C1 = (K1 * L) ** 2
C2 = (K2 * L) ** 2
mu1 = signal.fftconvolve(img1, window, mode = 'valid')
mu2 = signal.fftconvolve(img2, window, mode = 'valid')
mu1_sq = mu1 * mu1
mu2_sq = mu2 * mu2
mu1_mu2 = mu1 * mu2
sigma1_sq = signal.fftconvolve(img1 * img1, window, mode = 'valid') - mu1_sq
sigma2_sq = signal.fftconvolve(img2 * img2, window, mode = 'valid') - mu2_sq
sigma12 = signal.fftconvolve(img1 * img2, window, mode = 'valid') - mu1_mu2
if cs_map:
return (((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)),
(2.0 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2))
else:
return ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
def msssim(img1, img2):
"""This function implements Multi-Scale Structural Similarity (MSSSIM) Image
Quality Assessment according to Z. Wang's "Multi-scale structural similarity
for image quality assessment" Invited Paper, IEEE Asilomar Conference on
Signals, Systems and Computers, Nov. 2003
Author's MATLAB implementation:-
http://www.cns.nyu.edu/~lcv/ssim/msssim.zip
"""
level = 5
weight = np.array([0.0448, 0.2856, 0.3001, 0.2363, 0.1333])
downsample_filter = np.ones((2, 2)) / 4.0
mssim = np.array([])
mcs = np.array([])
for l in range(level):
ssim_map, cs_map = ssim(img1, img2, cs_map = True)
mssim = np.append(mssim, ssim_map.mean())
mcs = np.append(mcs, cs_map.mean())
filtered_im1 = ndimage.filters.convolve(img1, downsample_filter,
mode = 'reflect')
filtered_im2 = ndimage.filters.convolve(img2, downsample_filter,
mode = 'reflect')
im1 = filtered_im1[: : 2, : : 2]
im2 = filtered_im2[: : 2, : : 2]
# Note: Remove the negative and add it later to avoid NaN in exponential.
sign_mcs = np.sign(mcs[0 : level - 1])
sign_mssim = np.sign(mssim[level - 1])
mcs_power = np.power(np.abs(mcs[0 : level - 1]), weight[0 : level - 1])
mssim_power = np.power(np.abs(mssim[level - 1]), weight[level - 1])
return np.prod(sign_mcs * mcs_power) * sign_mssim * mssim_power
def ImageTransform(loadSize, cropSize):
return Compose([
Resize(size=loadSize, interpolation=Image.BICUBIC),
ToTensor(),
])
def visual(image):
im =(image).transpose(1,2).transpose(2,3).detach().cpu().numpy()
Image.fromarray(im[0].astype(np.uint8)).show()
imgData = devdata(dataRoot=img_path, gtRoot=gt_path, maskRoot=gt_path.replace('all_labels','mask'))
data_loader = DataLoader(imgData, batch_size=1, shuffle=True, num_workers=0, drop_last=False)
if args.BI == 'True':
print('BI')
else:
print('EE')
for k, (img,lbl, mask ,path) in enumerate(data_loader):
print('evaluating {} image'.format(k), end='\r')
if args.BI == 'True':
img[mask == 1] = 0
lbl[mask == 1] = 0
else:
img[mask != 1] = 0
lbl[mask != 1] = 0
mse = ((lbl - img) ** 2).mean()
sum_mse += mse
if mse == 0:
continue
count += 1
psnr = 10 * math.log10(1 / mse)
sum_psnr += psnr
R = lbl[0, 0, :, :]
G = lbl[0, 1, :, :]
B = lbl[0, 2, :, :]
YGT = .299 * R + .587 * G + .114 * B
R = img[0, 0, :, :]
G = img[0, 1, :, :]
B = img[0, 2, :, :]
YBC = .299 * R + .587 * G + .114 * B
Diff = abs(np.array(YBC * 255) - np.array(YGT * 255)).round().astype(np.uint8)
AGE = np.mean(Diff)
mssim = msssim(np.array(YGT * 255), np.array(YBC * 255))
sum_ssim += mssim
threshold = 20
Errors = Diff > threshold
EPs = sum(sum(Errors)).astype(float)
pEPs = EPs / float(512 * 512)
sum_pEPS += pEPs
########################## CEPs and pCEPs ################################
structure = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
sum_AGE += AGE
erodedErrors = ndimage.binary_erosion(Errors, structure).astype(Errors.dtype)
CEPs = sum(sum(erodedErrors))
pCEPs = CEPs / float(512 * 512)
sum_pCEPS += pCEPs
print(sum_psnr)
print('avg mse:', sum_mse / count)
print('average psnr:', sum_psnr / count)
print('average ssim:', sum_ssim / count)
print('average AGE:', sum_AGE / count)
print('average pEPS:', sum_pEPS / count)
print('average pCEPS:', sum_pCEPS / count)
mse_f = math.exp(-sum_mse / count)
AGE_f = math.exp(-sum_AGE / count)
pEPS_f = math.exp(-sum_pEPS / count)
pCEPS_f = math.exp(-sum_pCEPS / count)
psnr_f = 1/(1 + math.exp(-sum_psnr/ count))
ssim_f = 1/(1 + math.exp(-sum_ssim/ count))
print(mse_f,AGE_f,pEPS_f,pCEPS_f,psnr_f,ssim_f)
f_measure = 6/(1/mse_f + 1/AGE_f + 1/pEPS_f + 1/pCEPS_f + 1/psnr_f + 1/ssim_f)
print('f_measure:', f_measure)