-
Notifications
You must be signed in to change notification settings - Fork 2
/
目录.html
245 lines (230 loc) · 12.6 KB
/
目录.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<title>目录 | 广义线性混合模型</title>
<meta name="author" content="Wang Zhen">
<meta name="description" content="前言 第一版前言 第二版前言 第一篇:基本背景 建模基础 1.1 什么是模型 1.1.1 两处理均值模型 1.1.2 线性回归模型 1.1.3 最终评注 1.2 模型的替代形式 1.2.1 两种线性预测器形式:单元格均值和效应 1.2.2 两种模型形式:模型方程和概率分布 1.2.3 说明模型方程形式缺点的转折 1.2.4 非高斯数据建模的替代方法——初始概念 1.3 模型效应的类型...">
<meta name="generator" content="bookdown 0.38 with bs4_book()">
<meta property="og:title" content="目录 | 广义线性混合模型">
<meta property="og:type" content="book">
<meta property="og:description" content="前言 第一版前言 第二版前言 第一篇:基本背景 建模基础 1.1 什么是模型 1.1.1 两处理均值模型 1.1.2 线性回归模型 1.1.3 最终评注 1.2 模型的替代形式 1.2.1 两种线性预测器形式:单元格均值和效应 1.2.2 两种模型形式:模型方程和概率分布 1.2.3 说明模型方程形式缺点的转折 1.2.4 非高斯数据建模的替代方法——初始概念 1.3 模型效应的类型...">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="目录 | 广义线性混合模型">
<meta name="twitter:description" content="前言 第一版前言 第二版前言 第一篇:基本背景 建模基础 1.1 什么是模型 1.1.1 两处理均值模型 1.1.2 线性回归模型 1.1.3 最终评注 1.2 模型的替代形式 1.2.1 两种线性预测器形式:单元格均值和效应 1.2.2 两种模型形式:模型方程和概率分布 1.2.3 说明模型方程形式缺点的转折 1.2.4 非高斯数据建模的替代方法——初始概念 1.3 模型效应的类型...">
<!-- JS --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://kit.fontawesome.com/6ecbd6c532.js" crossorigin="anonymous"></script><script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link href="libs/bootstrap-4.6.0/bootstrap.min.css" rel="stylesheet">
<script src="libs/bootstrap-4.6.0/bootstrap.bundle.min.js"></script><script src="libs/bs3compat-0.7.0/transition.js"></script><script src="libs/bs3compat-0.7.0/tabs.js"></script><script src="libs/bs3compat-0.7.0/bs3compat.js"></script><link href="libs/bs4_book-1.0.0/bs4_book.css" rel="stylesheet">
<script src="libs/bs4_book-1.0.0/bs4_book.js"></script><script type="text/x-mathjax-config">
MathJax.Hub.Config({
"HTML-CSS": {
fonts: ["STIX-Web"]
},
SVG: {
font: "STIX-Web"
},
TeX: {Augment: {
Definitions: {macros: {symbf: 'Symbf'}},
Parse: {prototype: {
csMathchar0mi: function (name, mchar) {
var MML = MathJax.ElementJax.mml;
var def = {};
if (Array.isArray(mchar)) {def = mchar[1]; mchar = mchar[0]}
this.Push(this.mmlToken(MML.mi(MML.entity("#x"+mchar)).With(def)));
},
Symbf: function (name) {
var MML = MathJax.ElementJax.mml;
var math = this.ParseArg(name);
this.Push(MML.mstyle(math).With({mathvariant: "bold"}));
}
}}
}}
});
</script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- CSS --><style type="text/css">
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
</style>
<link rel="stylesheet" href="style.css">
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container-fluid">
<div class="row">
<header class="col-sm-12 col-lg-3 sidebar sidebar-book"><a class="sr-only sr-only-focusable" href="#content">Skip to main content</a>
<div class="d-flex align-items-start justify-content-between">
<h1>
<a href="index.html" title="现代概念、方法和应用">广义线性混合模型</a>:
<small class="text-muted">现代概念、方法和应用</small>
</h1>
<button class="btn btn-outline-primary d-lg-none ml-2 mt-1" type="button" data-toggle="collapse" data-target="#main-nav" aria-expanded="true" aria-controls="main-nav"><i class="fas fa-bars"></i><span class="sr-only">Show table of contents</span></button>
</div>
<div id="main-nav" class="collapse-lg">
<form role="search">
<input id="search" class="form-control" type="search" placeholder="Search" aria-label="Search">
</form>
<nav aria-label="Table of contents"><h2>Table of contents</h2>
<ul class="book-toc list-unstyled">
<li><a class="" href="index.html">译者序</a></li>
<li><a class="" href="%E6%89%89%E9%A1%B5.html">扉页</a></li>
<li><a class="active" href="%E7%9B%AE%E5%BD%95.html">目录</a></li>
<li><a class="" href="secpre.html">前言</a></li>
<li class="book-part">第一篇:基本背景</li>
<li><a class="" href="chap1.html"><span class="header-section-number">1</span> 建模基础</a></li>
<li><a class="" href="chap2.html"><span class="header-section-number">2</span> 设计要务</a></li>
<li><a class="" href="chap3.html"><span class="header-section-number">3</span> 搭建舞台</a></li>
<li><a class="" href="%E6%90%AD%E5%BB%BA%E8%88%9E%E5%8F%B0.html">►搭建舞台</a></li>
<li class="book-part">第二篇:估计和推断理论</li>
<li><a class="" href="chap4.html"><span class="header-section-number">4</span> GLMM 之前的估计和推断基础知识</a></li>
<li><a class="" href="chap5.html"><span class="header-section-number">5</span> GLMM 估计</a></li>
<li><a class="" href="chap6.html"><span class="header-section-number">6</span> 推断(一)</a></li>
<li><a class="" href="chap7.html"><span class="header-section-number">7</span> 推断(二)</a></li>
<li class="book-part">第三篇:应用</li>
<li><a class="" href="chap8.html"><span class="header-section-number">8</span> 处理和解释变量结构</a></li>
<li><a class="" href="chap9.html"><span class="header-section-number">9</span> 多水平模型</a></li>
<li class="book-part">—</li>
<li><a class="" href="bib.html">参考文献</a></li>
</ul>
<div class="book-extra">
</div>
</nav>
</div>
</header><main class="col-sm-12 col-md-9 col-lg-7" id="content"><div id="目录" class="section level1 unnumbered">
<h1>目录<a class="anchor" aria-label="anchor" href="#%E7%9B%AE%E5%BD%95"><i class="fas fa-link"></i></a>
</h1>
<ul>
<li>
<a href="secpre.html#secpre">前言</a>
<ul>
<li><a href="secpre.html#secpre1">第一版前言</a></li>
<li><a href="#secpre2">第二版前言</a></li>
</ul>
</li>
</ul>
<p><br><strong>第一篇:基本背景</strong></p>
<ol style="list-style-type: decimal">
<li>
<a href="chap1.html#chap1">建模基础</a>
<ul>
<li>1.1 <a href="chap1.html#sec1-1">什么是模型</a>
<ul>
<li>1.1.1 <a href="chap1.html#sec1-1-1">两处理均值模型</a>
</li>
<li>1.1.2 <a href="chap1.html#sec1-1-2">线性回归模型</a>
</li>
<li>1.1.3 <a href="chap1.html#sec1-1-3">最终评注</a>
</li>
</ul>
</li>
<li>1.2 <a href="chap1.html#sec1-2">模型的替代形式</a>
<ul>
<li>1.2.1 <a href="chap1.html#sec1-2-1">两种线性预测器形式:单元格均值和效应</a>
</li>
<li>1.2.2 <a href="chap1.html#sec1-2-2">两种模型形式:模型方程和概率分布</a>
</li>
<li>1.2.3 <a href="chap1.html#sec1-2-3">说明模型方程形式缺点的转折</a>
</li>
<li>1.2.4 <a href="chap1.html#sec1-2-4">非高斯数据建模的替代方法——初始概念</a>
</li>
</ul>
</li>
<li>1.3 <a href="chap1.html#sec1-3">模型效应的类型</a>
<ul>
<li>1.3.1 <a href="chap1.html#sec1-3-1">分类与直接效应</a>
</li>
<li>1.3.2 <a href="chap1.html#sec1-3-2">固定与随机效应</a>
</li>
</ul>
</li>
<li>1.4 <a href="chap1.html#sec1-4">以矩阵形式编写模型</a>
<ul>
<li>1.4.1 <a href="chap1.html#sec1-4-1">仅固定效应模型</a>
</li>
<li>1.4.2 <a href="chap1.html#sec1-4-2">混合模型:具有固定效应和随机效应的模型</a>
</li>
</ul>
</li>
<li>1.5 <a href="chap1.html#sec1-5">小结:模型完整陈述的必要元素</a>
</li>
<li><a href="chap1.html#exe1">练习</a></li>
</ul>
</li>
<li><a href="chap2.html#chap2">设计要务</a></li>
<li><a href="chap3.html#chap3">搭建舞台</a></li>
</ol>
<p><br><strong>第二篇:估计和推断理论</strong></p>
<ol start="4" style="list-style-type: decimal">
<li><a href="chap4.html#chap4">GLMM 之前的估计和推断基础知识</a></li>
<li><a href="chap5.html#chap5">GLMM 估计</a></li>
<li><a href="chap6.html#chap6">推断(一)</a></li>
<li><a href="chap7.html#chap7">推断(二)</a></li>
</ol>
<p><br><strong>第三篇:应用</strong></p>
<ol start="8" style="list-style-type: decimal">
<li><a href="chap8.html#chap8">处理和解释变量结构</a></li>
<li><a href="chap9.html#chap9">多水平模型</a></li>
<li><a href="#chap10">最佳线性无偏预测</a></li>
<li><a href="#chap11">计数</a></li>
<li><a href="#chap12">率和比例</a></li>
<li><a href="#chap13">零膨胀和栅栏模型</a></li>
<li><a href="#chap14">多项数据</a></li>
<li><a href="#chap15">事件时间数据</a></li>
<li><a href="#chap16">平滑样条曲线和加性模型</a></li>
<li><a href="#chap17">相关数据(一):重复测量</a></li>
<li><a href="#chap18">相关数据(二):空间变异性</a></li>
<li><a href="#chap19">GLMM的贝叶斯实现</a></li>
<li><a href="#chap20">五个贝叶斯 GLMM 示例</a></li>
<li><a href="#chap21">精度、功效、样本量和计划</a></li>
</ol>
</div>
<div class="chapter-nav">
<div class="prev"><a href="%E6%89%89%E9%A1%B5.html">扉页</a></div>
<div class="next"><a href="secpre.html">前言</a></div>
</div></main><div class="col-md-3 col-lg-2 d-none d-md-block sidebar sidebar-chapter">
<nav id="toc" data-toggle="toc" aria-label="On this page"><h2>On this page</h2>
<ul class="nav navbar-nav"><li><a class="nav-link" href="#%E7%9B%AE%E5%BD%95">目录</a></li></ul>
<div class="book-extra">
<ul class="list-unstyled">
</ul>
</div>
</nav>
</div>
</div>
</div> <!-- .container -->
<footer class="bg-primary text-light mt-5"><div class="container"><div class="row">
<div class="col-12 col-md-6 mt-3">
<p>"<strong>广义线性混合模型</strong>: 现代概念、方法和应用" was written by Wang Zhen. It was last built on 2024-05-19.</p>
</div>
<div class="col-12 col-md-6 mt-3">
<p>This book was built by the <a class="text-light" href="https://bookdown.org">bookdown</a> R package.</p>
</div>
</div></div>
</footer><!-- dynamically load mathjax for compatibility with self-contained --><script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.9/latest.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script><script type="text/x-mathjax-config">const popovers = document.querySelectorAll('a.footnote-ref[data-toggle="popover"]');
for (let popover of popovers) {
const div = document.createElement('div');
div.setAttribute('style', 'position: absolute; top: 0, left:0; width:0, height:0, overflow: hidden; visibility: hidden;');
div.innerHTML = popover.getAttribute('data-content');
var has_math = div.querySelector("span.math");
if (has_math) {
document.body.appendChild(div);
MathJax.Hub.Queue(["Typeset", MathJax.Hub, div]);
MathJax.Hub.Queue(function() {
popover.setAttribute('data-content', div.innerHTML);
document.body.removeChild(div);
})
}
}
</script>
</body>
</html>