forked from rsameni/BSSLecture
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Ex01_testPCA.m
105 lines (87 loc) · 2.62 KB
/
Ex01_testPCA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
% Principal component analysis
%
% BMI500 Course
% Lecture: An Introduction to Blind Source Separation and Independent Component Analysis
% By: R. Sameni
% Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
% Fall 2020
%
% Dependency: The open-source electrophysiological toolbox (OSET):
% https://github.com/alphanumericslab/OSET.git
% OR
% https://gitlab.com/rsameni/OSET.git
%
clc
clear
close all
example = 2;
switch example
case 1 % Load a sample EEG signal
load EEGdata textdata data % A sample EEG from the OSET package
fs = 250;
x = data'; % make the data in (channels x samples) format
% Check the channel names
disp(textdata)
case 2 % Load a sample ECG signal
load SampleECG2 data % A sample ECG from the OSET package
fs = 1000;
x = data(:, 2:end)'; % make the data in (channels x samples) format
x = x - LPFilter(x, 1.0/fs); % remove the lowpass baseline
otherwise
error('unknown example');
end
N = size(x, 1); % The number of channels
T = size(x, 2); % The number of samples per channel
% Plot the channels
PlotECG(x, 4, 'b', fs, 'Raw data channels');
% Remove the channel means
x_demeaned = x - mean(x, 2) * ones(1, size(x, 2));
% Plot the zero-mean channels
% PlotECG(x_demeaned, 4, 'r', fs, 'Zero-mean data channels');
% Covariance matrix of the input
Cx = cov(x_demeaned')
% Eigenvalue decomposition
[V, D] = eig(Cx, 'vector');
figure
subplot(121)
plot(D(end:-1:1));
grid
xlabel('Index');
ylabel('Eigenvalue');
title('Eigenvalues in linear scale');
subplot(122)
plot(10*log10(D(end:-1:1)/D(end)));
grid
xlabel('Index');
ylabel('Eigenvalue ratios in dB');
title('Normalized eigenvalues in log scale');
% Check signal evergy
x_var = var(x_demeaned, [], 2) % Formula 1
x_var2 = diag(Cx) % formula 2
% Decorrelate the channels
y = V' * x_demeaned;
Cy = cov(y')
y_var = diag(Cy)
% PlotECG(y, 4, 'r', fs, 'Decorrelated data channels');
% Check total energy match
x_total_energy = sum(x_var)
Cx_trace = trace(Cx)
eigenvale_sum = sum(D)
Cy_trace = trace(Cy)
% partial energy in eigenvalues
x_partial_energy = 100.0 * cumsum(D(end : -1 : 1))./x_total_energy
% set a cut off threshold for the eigenvalues
th = 99.9;
N_eigs_to_keep = find(x_partial_energy <= th, 1, 'last')
% find a compressed version of x
x_compressed = V(:, N - N_eigs_to_keep + 1 : N) * y(N - N_eigs_to_keep + 1 : N, :);
% eig(cov(x_compressed'))
t = (0 : T - 1)/fs;
for ch = 1 : N
figure
hold on
plot(t, x(ch, :));
plot(t, x_compressed(ch, :));
legend(['channel ' num2str(ch)], 'compressed');
grid
end