-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
329 lines (291 loc) · 13.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# coding=utf-8
# NTS_net的脚本
from __future__ import absolute_import, print_function
import argparse
import os
import json
import torch
import shutil
import time
import numpy as np
import pandas as pd
from sklearn import metrics
from glob import glob
from torch.nn import DataParallel
from torch.utils.tensorboard import SummaryWriter
from torchsummary import summary
from torch.optim.lr_scheduler import MultiStepLR, CosineAnnealingLR
from DataSet.dataset import get_iwildcam_loader, data_prefetcher
from Utils.train_utils import cross_entropy, focal_loss, cb_loss, get_optimizer, set_logs, load_ckpt
from Utils.train_utils import AverageMeter, ProgressMeter, accuracy
from Utils.train_utils import mixup_data, mixup_criterion
from Utils.default import _C as cfg
from Utils.default import update_config
from Models import NTS
import click
import warnings
warnings.filterwarnings("ignore")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
print("Use Device Number: {}".format(torch.cuda.device_count()))
def evaluate(model, data_loader, criterion, use_onehot=True):
y_pred, y_true, losses=[],[],[]
with torch.no_grad():
inputs, labels, ids = data_loader.next()
while inputs is not None:
bs = inputs.size(0)
if use_onehot:
targets = np.argmax(labels.cpu().detach().numpy(), axis=1)
else:
targets = labels.cpu().detach().numpy()
y_true.extend(targets)
# output = model(inputs)
_, concat_logits, _, _, _ = model(inputs)
# --- calculate loss ---
concat_loss = criterion(concat_logits, labels)
# --- calculate accuarcy ---
y_pred.extend(np.argmax(concat_logits.cpu().detach().numpy(), axis=1))
losses.append(concat_loss.item())
inputs, labels, ids = data_loader.next()
acc = metrics.accuracy_score(y_true, y_pred)
f1 = metrics.f1_score(y_true, y_pred, average='macro')
loss_val = np.mean(losses)
return loss_val, acc, f1
def main(cfg):
tensorboard_dir = os.path.join(cfg.SAVE_DIR, "tb_event")
if not os.path.exists(cfg.SAVE_DIR):
os.makedirs(cfg.SAVE_DIR)
else:
print("This directory has already existed, Please remember to modify your configs")
if not click.confirm(
"\033[1;31;40mContinue and override the former directory?\033[0m",
default=False,
):
exit(0)
if tensorboard_dir is not None and os.path.exists(tensorboard_dir):
shutil.rmtree(tensorboard_dir)
print("=> output model will be saved in {}".format(cfg.SAVE_DIR))
tb_writer = SummaryWriter(tensorboard_dir)
model = NTS.attention_net(cfg, CAT_NUM=cfg.NET.CAT_NUM, topN=cfg.NET.PROPOSAL_NUM)
print(model)
# special for NTS
raw_parameters = list(model.pretrained_model.parameters())
part_parameters = list(model.proposal_net.parameters())
concat_parameters = list(model.concat_net.parameters())
partcls_parameters = list(model.partcls_net.parameters())
raw_optimizer = torch.optim.SGD(raw_parameters, lr=cfg.TRAIN.LR, momentum=0.9, weight_decay=cfg.TRAIN.WEIGHT_DECAY)
concat_optimizer = torch.optim.SGD(concat_parameters, lr=cfg.TRAIN.LR, momentum=0.9, weight_decay=cfg.TRAIN.WEIGHT_DECAY)
part_optimizer = torch.optim.SGD(part_parameters, lr=cfg.TRAIN.LR, momentum=0.9, weight_decay=cfg.TRAIN.WEIGHT_DECAY)
partcls_optimizer = torch.optim.SGD(partcls_parameters, lr=cfg.TRAIN.LR, momentum=0.9, weight_decay=cfg.TRAIN.WEIGHT_DECAY)
param_num = sum([p.data.nelement() for p in model.parameters()])
print("Number of model parameters: {} M".format(param_num / 1024 / 1024))
model = model.cuda()
model = DataParallel(model)
model.train()
train_data_loader, dev_data_loader = get_iwildcam_loader(params, mode=params['mode']) # train/eval的dataloader
if params['lr_schedule'] == "Step":# True
# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=params['lr_decay_epochs'], gamma=0.2)
schedulers = [MultiStepLR(raw_optimizer, milestones=cfg.TRAIN.LR_DECAY_EPOCHS, gamma=0.1),
MultiStepLR(concat_optimizer, milestones=cfg.TRAIN.LR_DECAY_EPOCHS, gamma=0.1),
MultiStepLR(part_optimizer, milestones=cfg.TRAIN.LR_DECAY_EPOCHS, gamma=0.1),
MultiStepLR(partcls_optimizer, milestones=cfg.TRAIN.LR_DECAY_EPOCHS, gamma=0.1)]
elif params['lr_schedule'] == "Cosine":
schedulers = [CosineAnnealingLR(raw_optimizer, T_max=(cfg.TRAIN.EPOCHS // 9) + 1, eta_min=1e-06),
CosineAnnealingLR(concat_optimizer, T_max=(cfg.TRAIN.EPOCHS // 9) + 1, eta_min=1e-06),
CosineAnnealingLR(part_optimizer, T_max=(cfg.TRAIN.EPOCHS // 9) + 1, eta_min=1e-06),
CosineAnnealingLR(partcls_optimizer, T_max=(cfg.TRAIN.EPOCHS // 9) + 1, eta_min=1e-06)
]
best_acc, best_f1, best_epoch, start_epoch = 0, 0, 0, 1
# ------ Begin Resume -------
if cfg.RESUME:
load_ckpt(cfg.SAVE_DIR) # read history parameters from json
ckpt = torch.load(cfg.INIT_MODEL, map_location="cuda") # already specify in load_params()
print('=> Load checkpoint from ', cfg.INIT_MODEL)
model.load_state_dict(ckpt['state_dict'])
raw_optimizer.load_state_dict(ckpt['raw_optimizer'])
part_optimizer.load_state_dict(ckpt['part_optimizer'])
concat_optimizer.load_state_dict(ckpt['concat_optimizer'])
partcls_optimizer.load_state_dict(ckpt['partcls_optimizer'])
# optimizer.load_state_dict(ckpt['optimizer'])
scheduler.load_state_dict(ckpt['schduler']) # FIXME: to check
start_epoch = ckpt['epoch'] + 1
# best_acc = ckpt['best_acc']
best_f1 = ckpt['best_f1']
best_epoch = ckpt['best_epoch']
if cfg.LOSS.LOSS_TYPE == 'CE':
criterion = cross_entropy(func_type='softmax').to(device)
if cfg.LOSS.WEIGHT_PER_CLS:
CE = torch.nn.CrossEntropyLoss(weight=torch.from_numpy(cfg.LOSS.WEIGHT_PER_CLS).float().to(device))
label_type = 'float'
elif cfg.LOSS.LOSS_TYPE == 'Sigmoid_CE':
criterion = cross_entropy(func_type='sigmoid').to(device)
label_type = 'float'
elif cfg.LOSS.LOSS_TYPE == 'Focal':
criterion = focal_loss(gamma=1.0, alpha=1.0).to(device)
label_type = 'long'
elif cfg.LOSS.LOSS_TYPE == 'CB_loss': # FIXME: this is unsure implementation, low score
criterion = cb_loss(cfg.LOSS.SAMPLES_PER_CLS, cfg.NUM_CLASSES, 'softmax').to(device)
label_type = 'float'
else:
raise NotImplementedError("Not accessible loss type for: {}".format(cfg.LOSS.LOSS_TYPE))
t0 = time()
t1 = time()
it = 0
print('[INFO]Begin to train')
use_onehot = cfg.LOSS.LOSS_TYPE != 'Focal'
for epoch in range(start_epoch, cfg.TRAIN.EPOCHS + 1):
print('=> Current Lr {:.5e}'.format(optimizer.param_groups[0]['lr']))
if cfg.TRAIN.LR_SCHEDULE:
scheduler.step()
train_loader = data_prefetcher(train_data_loader, label_type)
inputs, labels, ids = train_loader.next() # ids没有用到
i = 0
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
train_acc = AverageMeter('Acc', ':6.2f')
train_f1 = AverageMeter('F1', ':6.2f')
progress = ProgressMeter(
len(train_data_loader),
[batch_time, data_time, losses, train_acc, train_f1],
prefix="Epoch: [{}]".format(epoch))
while inputs is not None:
bs = inputs.size(0)
# mixup_now = np.random.random() < cfg.AUG.AUG_PROBA # 0.5 一半的概率mixup
# if cfg.AUG.MIXUP and mixup_now: # True & 一半的概率
# inputs, labels_a, labels_b, lam = mixup_data(inputs, labels, cfg.AUG.MIXUP_ALPHA)
raw_logits, concat_logits, part_logits, _, top_n_prob = model(inputs)
# optimizer.zero_grad()
raw_optimizer.zero_grad()
part_optimizer.zero_grad()
concat_optimizer.zero_grad()
partcls_optimizer.zero_grad()
raw_logits, concat_logits, part_logits, _, top_n_prob = model(inputs)
if cfg.AUG.MIXUP and mixup_now:
# TODO: to implement NTS with mixup
# loss = mixup_criterion(criterion, output, labels_a, labels_b, lam) # mixup之后的图片也要根据mixup的obj算loss
pass
else:
part_loss = NTS.list_loss(
part_logits.view(bs * cfg.NET.PROPOSAL_NUM, -1),
labels.max(axis=1)[1].unsqueeze(1).repeat(1, cfg.NET.PROPOSAL_NUM).view(-1)).view(bs, cfg.NET.PROPOSAL_NUM)
raw_loss = criterion(raw_logits, labels)
concat_loss = criterion(concat_logits, labels)
rank_loss = NTS.ranking_loss(top_n_prob, part_loss, proposal_num=cfg.NET.PROPOSAL_NUM)
CE = torch.nn.CrossEntropyLoss()
partcls_loss = CE(
part_logits.view(bs * cfg.NET.PROPOSAL_NUM, -1),
labels.max(axis=1)[1].unsqueeze(1).repeat(1, cfg.NET.PROPOSAL_NUM).view(-1))
# part_logits, (256,6,209) => (1536,209)
# labels: (1536,)
total_loss = raw_loss + rank_loss + concat_loss + partcls_loss
total_loss.backward()
raw_optimizer.step()
part_optimizer.step()
concat_optimizer.step()
partcls_optimizer.step()
if i % cfg.PRINT_STEP == 0:
preds = np.argmax(concat_logits.cpu().detach().numpy(), axis=1) # argmax on logits
if use_onehot:
targets = np.argmax(labels.cpu().detach().numpy(), axis=1)
else:
targets = labels.cpu().detach().numpy()
acc = metrics.accuracy_score(targets, preds)
loss = concat_loss
loss_val = loss.item()
f1 = metrics.f1_score(targets,preds,average='macro')
# train_log.append([epoch,i, loss_val, acc, f1])
# print("epoch: %d, iter: %d, train_loss: %.4f, train_acc: %.4f, train_f1: %.4f, lr_rate: %.1e, time_cost_per_iter: %.4f s" % ( \
# epoch, i, loss_val, acc, f1, (raw_optimizer.param_groups[0]['lr']), (time() - t1)/params['print_step']))
tb_writer.add_scalar('train_loss', loss_val, it)
# with open(params['log_dir'] + 'train.tsv', 'a') as f:
# f.write('%05d\t%05d\t%f\t%f\t%f\n' % (epoch, i, loss_val, acc, f1))
t1 = time()
if (i+1) % params['eval_step'] == 0: # 95
t2=time()
model.eval()
data_loader = data_prefetcher(dev_data_loader,label_type)
loss_val, acc, f1 = evaluate(model, data_loader, criterion, use_onehot)
model.train()
dev_log.append([epoch, i, acc, f1])
if f1 > best_f1:
best_acc, best_f1, best_iter, best_epoch = acc, f1, i, epoch
print('[Evaluation] -------------------------------')
print("epoch: %d, test acc: %.4f, f1-score: %.4f, best-f1-score: %.4f, eval_time: %.4f s" % (
epoch, acc, f1, best_f1,time()-t2))
print('[Evaluation] -------------------------------')
tb_writer.add_scalar('val_metrics/val_acc', acc, it)
tb_writer.add_scalar('val_metrics/val_f1-score', f1, it)
tb_writer.add_scalar('val_metrics/val_loss', loss_val, it)
with open(params['log_dir'] + 'eval.tsv', 'a') as f:
f.write('%05d\t%05d\t%f\t%f\n' % (epoch, i, acc, f1))
save_model_path= os.path.join(params['save_dir'], 'model_%d_%d.pkl' % (epoch, i))
# torch.save(model, save_model_path) # FIXME: this is bad for multi-gpu, use below instead
torch.save({
'state_dict': model.module.state_dict(),
'schduler': scheduler.state_dict(),
'raw_optimizer': raw_optimizer.state_dict(),
'part_optimizer': part_optimizer.state_dict(),
'concat_optimizer': concat_optimizer.state_dict(),
'partcls_optimizer': partcls_optimizer.state_dict(),
}, save_model_path)
print('[INFO]save model to', save_model_path)
inputs, labels, ids = train_loader.next()
i += 1
it += 1
print("[INFO]Train is over, Time cost: %.1f hours..." % ((time()-t0) / 3600))
# copy best_f1 model to model_best.pkl
source = 'model_%d_%d.pkl' % (best_epoch, best_iter)
source_path = os.path.join(params['save_dir'], source)
target = 'model_best.pkl'
target_path = os.path.join(params['save_dir'], target)
try:
shutil.copy(source_path, target_path)
print("Save best model to {}: [epoch-iter: {:d}-{:d}/ f1-score: {:.4f}]".format(target_path, best_epoch, best_iter, best_f1))
except IOError as e:
print("Unable to copy file. %s" % e)
except:
print("Unexpected error:", sys.exc_info())
# ---- Delete Useless ckpt
ckpts = sorted(name for name in os.listdir(params['save_dir']) if name.startswith('model'))
ckpts = ckpts[:-1]
print("=> Start to clean checkpoint from {} to {}".format(ckpts[0], ckpts[-1]))
for name in ckpts:
os.remove(os.path.join(params['save_dir'], name))
def set_logs(cfg):
cfg.LOG_DIR = os.path.join(cfg.SAVE_DIR, "log/")
if not os.path.exists(cfg.LOG_DIR):
os.makedirs(cfg.LOG_DIR)
# TODO: to be more elegant, use logging
def load_ckpt(save_dir):
# params_path = save_dir + 'log/parameters.json'
# print('[INFO]Load params form', params_path)
# params = json.load(fp=open(params_path, 'r'))
ckpts = glob(os.path.join(save_dir, '*.pkl'))
if len(ckpts)>0:
# ckpts.remove(os.path.join(save_dir, 'model_best.pkl'))
ckpts = sorted(ckpts, key=lambda x: int(x.split('/')[-1].split('.')[0].split('_')[-1]))
cfg.INIT_MODEL = ckpts[-1] # 最新的
print(cfg.INIT_MODEL)
# print(params)
# return params
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', '-cfg', default='input yaml path')
local_args = parser.parse_args()
cfg = update_config(cfg, local_args)
cfg.SAVE_DIR = os.path.join("/data/iwildcam_output", os.path.basename(local_args.config))
set_logs(cfg)
print("=" * 40)
print(cfg)
print("=" * 40)
if cfg.CROSS_VALIDATION:
K = 5 # K-cross validation
for i in range(K):
# update params for K-cross
cfg.DATASET.TRAIN_JSON = '/Kcross' + '/train_K{}.json'.format(i)
cfg.DATASET.VAL_JSON = '/KCross' + '/val_K{}.json'.format(i)
main(cfg, i, K)
print("---- {}/{} Finished ---- ".format(i+1, K))
else:
main(cfg)