-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathSTMGCN_attention.py
265 lines (195 loc) · 7.57 KB
/
STMGCN_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# -*- coding: utf-8 -*-
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
from matplotlib import pyplot
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
import os
from gconv import gconv
TIME_STEPS = 12
BATCH_SIZE = 32
HIDDEN_UNITS = 16
LEARNING_RATE = 0.01
EPOCH = 50
NODES = 30
KEEP_DROP = 0.2
INPUT_SIZE = 30
OUTPUT_SIZE = 30
REGULARIZAER = 0.003
TRAIN_EXAMPLES = 6400
VAL_EXAMPLES = 800
TEST_EXAMPLES = 1600
NUM_LAYER = 3
scaler = MinMaxScaler(feature_range=(0, 1))
def generate(seq, vol):
X = []
y = []
for i in range(vol):
X.append([seq[i:i + TIME_STEPS]])
y.append([seq[i + TIME_STEPS]])
X = np.array(X, dtype=np.float32)
X = X.reshape(-1, TIME_STEPS, NODES)
Y = np.array(y, dtype=np.float32)
Y = Y.reshape(-1, NODES)
return X, Y
def load_data():
# load dataset
dataset = pd.read_csv('data/data.csv', header=None, index_col=None)
values = dataset.values.astype('float32')
# normalize features
scaled = scaler.fit_transform(values)
# split into train and test sets
n_train = int(len(scaled) * 0.7) + 1
n_val = int(len(scaled) * 0.1)
n_test = int(len(scaled) * 0.2)
train = scaled[:n_train, :]
val = scaled[n_train:n_train + n_val, :]
test = scaled[n_train + n_val:, :]
X_train, y_train = generate(train, TRAIN_EXAMPLES)
X_val, y_val = generate(val, VAL_EXAMPLES)
X_test, y_test = generate(test, TEST_EXAMPLES)
return X_train, y_train, X_val, y_val, X_test, y_test
def load_adj():
simi_adj = pd.read_csv('data/weight_simi.csv', header=None, index_col=None)
simi_adj = np.mat(simi_adj)
dis_adj = pd.read_csv('data/weight_dis.csv', header=None, index_col=None)
dis_adj = np.mat(dis_adj)
cont_adj = pd.read_csv('data/weight_adj.csv', header=None, index_col=None)
cont_adj = np.mat(cont_adj)
return simi_adj, dis_adj, cont_adj
def get_W(shape):
initializer = tf.contrib.layers.xavier_initializer()
w=tf.get_variable('W', dtype=tf.float32,shape=shape,initializer=initializer)
return w
def get_b(shape):
initializer = tf.constant(0.,shape=shape,dtype=tf.float32)
b=tf.get_variable('b',dtype=tf.float32,initializer=initializer)
return b
def attention(x, adj):
# x_pool_input = tf.reshape(x, [BATCH_SIZE, TIME_STEPS, NODES, 1])
# x_pool = tf.layers.average_pooling2d(x_pool_input, [TIME_STEPS, NODES], [1,1], 'VALID')
print ('----attention----')
x_pool = tf.reduce_sum(x,2)
x_gcn_input = tf.transpose(x, perm=[0, 2, 1])
x_gcn_input = tf.reshape (x_gcn_input, [BATCH_SIZE, NODES, TIME_STEPS])
GCN = gconv(TIME_STEPS, adj, 2, NODES)
x_gcn_output = GCN(x_gcn_input)
x_gcn_pool = tf.reduce_sum(x_gcn_output,1)
x_hat =tf.add(x_pool,x_gcn_pool)
z = tf.divide(x_hat,NODES)
with tf.variable_scope('w1_attention',reuse=tf.AUTO_REUSE):
w1 = get_W([TIME_STEPS,TIME_STEPS])
b1 = get_b([TIME_STEPS])
tmp_s =tf.nn.relu(tf.add(tf.matmul(z,w1),b1))
with tf.variable_scope('w2_attention', reuse=tf.AUTO_REUSE):
w2 = get_W([TIME_STEPS, TIME_STEPS])
b2 = get_b([TIME_STEPS])
s= tf.nn.sigmoid(tf.add(tf.matmul(tmp_s,w2),b2))
s = tf.reshape(s, [BATCH_SIZE,TIME_STEPS,1])
x_reweight = tf.multiply(x,s)
return x_reweight
def lstm_network(x):
def lstm_cell():
return tf.nn.rnn_cell.LSTMCell(HIDDEN_UNITS)
cell = tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in range(NUM_LAYER)])
outputs, state_tuple = tf.nn.dynamic_rnn(
cell=cell,
inputs=x,
dtype=tf.float32)
# outputs: (?, 12, 16)
network_output = outputs[:, -1, :]
return network_output
def stmgcn(x, adj):
x_reweight = attention(x, adj) # shape=(32, 12, 30)
split = tf.split(x_reweight, NODES, 2) # [32, 12, 1]
with tf.variable_scope('lstm', reuse=tf.AUTO_REUSE):
tmp = [0] * NODES
for i in range(len(split)):
output_each_node = lstm_network(split[i])
tmp[i] = tf.reshape(output_each_node, [1, BATCH_SIZE, HIDDEN_UNITS])
lstm_output = tf.concat(tmp, 0)
lstm_output = tf.transpose(lstm_output, perm=[1, 0, 2])
print('lstm_output', lstm_output)
with tf.variable_scope('gcn'):
GCN = gconv(HIDDEN_UNITS, adj, 2, NODES)
gcn_output = GCN(lstm_output)
return gcn_output
def get_batch(X, y):
idx = np.random.randint(X.shape[0] - BATCH_SIZE)
x_batch = X[idx: idx + BATCH_SIZE]
y_batch = y[idx: idx + BATCH_SIZE]
return x_batch, y_batch
simi_adj, dis_adj, cont_adj = load_adj()
X_train, y_train, X_val, y_val, X_test, y_test = load_data()
print ('X_train:{}, y_train:{}'.format(X_train.shape,y_train.shape))
print ('X_val:{}, y_val:{}'.format(X_val.shape,y_val.shape))
tf.reset_default_graph()
x = tf.placeholder(tf.float32, [None, TIME_STEPS, INPUT_SIZE]) # [None, 12, 30]
y = tf.placeholder(tf.float32, [None, OUTPUT_SIZE]) # [None, 30]
with tf.variable_scope('simi_adj'):
gcn_output1 = stmgcn(x,simi_adj)
with tf.variable_scope('dis_adj'):
gcn_output2 = stmgcn(x,simi_adj)
with tf.variable_scope('cont_adj'):
gcn_output3 = stmgcn(x,simi_adj)
network_output = tf.add(tf.add(gcn_output1, gcn_output2), gcn_output3) # (32, 30, 16)
all_output = tf.layers.dense(
inputs=network_output,
units=1,
activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(REGULARIZAER))
all_output = tf.reshape(all_output, shape=[-1, NODES])
print('all_output', all_output) # (32, 30)
loss = tf.losses.mean_squared_error(labels=y,predictions=all_output)
training_optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE).minimize(loss)
init = tf.global_variables_initializer()
saver = tf.train.Saver(tf.global_variables())
sess = tf.InteractiveSession()
sess.run(init)
loss_cache = []
val_loss_cache = []
train_batch_number = int(X_train.shape[0] / BATCH_SIZE)
val_batch_number = int(X_val.shape[0] / BATCH_SIZE)
for e in range(EPOCH):
for _ in range(train_batch_number):
x_batch, y_batch = get_batch(
X=X_train,
y=y_train
)
_, train_loss = sess.run(
[training_optimizer, loss],
feed_dict={
x: x_batch,
y: y_batch})
loss_cache.append(train_loss)
res_variance_unscaled = []
#
# y_pred_all_batch = [[0] * NODES for i in range(BATCH_SIZE)]
# y_val_all_batch = [[0] * NODES for i in range(BATCH_SIZE)]
for _ in range(val_batch_number):
x_batch_val, y_batch_val = get_batch(
X=X_val,
y=y_val
)
val_loss, y_pred_val = sess.run(
[loss,all_output],
feed_dict={
x: x_batch_val,
y: y_batch_val})
y_pred_val_unscaled = scaler.inverse_transform(y_pred_val)
y_batch_val_unscaled = scaler.inverse_transform(y_batch_val)
# print('y_batch_val_unscaled',len(y_batch_val_unscaled))
# y_pred_all_batch = y_pred_all_batch + y_pred_val_unscaled
# y_val_all_batch = y_pred_all_batch + y_batch_val_unscaled
variance_one_batch = (y_pred_val_unscaled - y_batch_val_unscaled) ** 2
res_variance_unscaled.append(variance_one_batch)
val_loss_cache.append(val_loss)
# print ('y_pred_all_batch',len(y_pred_all_batch))
mse = np.mean(res_variance_unscaled)
rmse = np.sqrt(mse)
print('Epoch: {}/{}\ttrain_loss: {}\tval_loss: {}'.format(e + 1, EPOCH, str(train_loss)[:8], str(val_loss)[:8]))
print('Val Set Performance: Unscaled MSE: {} Unscaled RMSE: {}'.format(mse, rmse))
# best rmse: 23