-
Notifications
You must be signed in to change notification settings - Fork 826
Migration
Erika Dsouza edited this page Jan 19, 2018
·
16 revisions
This version of the SDK accepts either models or dicts as input parameters and produces dicts as method responses. Models for response classes are still generated and not pruned, so users can create a model from the returned dict.
-
message()
parametermessage_input
renamed toinput
-
create_configuration()
parameterconfig_data={"name": ""}
renamed toname
-
update_configuration()
parameterconfig_data={"name": ""}
renamed toname
-
add_document()
parameterfile_data
is removed. File contents are now passed with thefile/filename
parameters. -
update_document()
parametersmime_type
renamed tofile_content_type
,file_info
andfile_data
replaced byfile
, andfilename
is the file name given to the file - Some methods have been renamed:
- get_environments -> list_environments
- test_document -> test_configuration_in_environment
- get_document -> get_document_status
- delete_training_data -> delete_all_training_data
- add_training_data_query -> add_training_data
- delete_training_data_query -> delete_training_data
- get_training_data_query -> get_training_data
- add_training_data_query_example -> create_training_example
- delete_training_data_query_example -> delete_training_example
- get_training_data_query_example -> get_training_example
- update_training_data_query_example -> update_training_example
-
list_training_data_query_examples()
is removed
- Some methods have been renamed:
- get_models -> list_models
- get_identifiable_languages -> list_identifiable_languages
- Some methods have been renamed:
- list -> list_classifiers
- status -> get_classifier
- create -> create_classifier
-
create_classifier()
parametermetadata
has been added
-
- remove -> delete_classifier
-
analyze()
parameterlimit_text_characters
has been added -
Dropped hand-written
Features
module in favor of generated Features model. For example:natural_language_understanding.analyze( text='Messi is the best', features=[Features.Entities(), Features.Keywords ()])
is now:
natural_language_understanding.analyze( text='Messi is the best', features=Features(entities=EntitiesOptions(), keywords=KeywordsOptions()))
-
tone()
parameters have been reordered:tone(self, tone_input, content_type='application/json', sentences=None, tones=None, content_language=None, accept_language=None)
-
tone()
parametertext
replaced bytone_input
-
tone()
parametercontent_type
default value changed fromtext/plain
toapplication/json
-
tone()
parameterscontent_language
andaccept_language
have been addedtone(self, text, tones=None, sentences=None, content_type='text/plain')
is now:
tone(tone_input, content_type='application/json', sentences=None, content_language=None, accept_language=None):
-
profile()
parametertext
changed tocontent
-
profile()
parametercontent_type
default value changed fromtext/plain
toapplication/json
-
profile()
parameteraccept
is removed
-
classify parameters
images_url,
classifier_ids,
owners, and xxx replaced with
parameters`.classify(images_file=images_file, threshold=0.1, classifier_ids=['CarsvsTrucks_1479118188', 'default'])
is now:
parameters = json.dumps({'threshold': 0.1, 'classifier_ids': ['CarsvsTrucks_1479118188', 'default']}) visual_recognition.classify(images_file=images_file, parameters=parameters)