-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
309 lines (283 loc) · 13.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from __future__ import print_function
import sys
import logging
import os
import time
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable, Function
import numpy as np
from fingerprint.graph import load_from_mol_tuple
from utils import get_lstm_embedding
def load_data(edges_dict,datatype='train',ikey2mol=None):
#load training pairs with labels
#edges: list of tuples (inchikey,uniprotID)
#labels: list of float activity values for each edge
count=0
count_skipped=0
labels=[]
edges=[]
chems=[]
prots=[]
for cp in edges_dict.keys():
chem,prot=cp.strip().split('\t')
chems.append(chem)
prots.append(prot)
count+=1
labels.append(edges_dict[cp])
edges.append((chem,prot))
chems=list(set(chems))
prots=list(set(prots))
logging.info("Total {} chemicals, {} proteins, {} activities loaded for {} data. {} chemicals skipped for non-Mol conversion".format(len(chems),
len(prots),len(labels),datatype,count_skipped))
return edges, labels
class Trainer():
def __init__(self, model=None,
epoch=100, batch_size=40, ckpt_dir="./temp/",
optimizer='adam',l2=1e-3, lr=1e-5, scheduler='cosineannealing',
prediction_mode=None,
ikey2smiles=None,
protein_embedding_type=None,
uniprot2triplets=None,
ikey2mol=None,
berttokenizer=None):
self.batch_size = batch_size
self.checkpoint_dir = ckpt_dir
self.train_epoch = epoch
self.optimizer = optimizer
self.l2 = l2
self.lr = lr
self.scheduler = scheduler
if self.scheduler.lower()=='cyclic':
self.optimizer = 'sgd'
logging.info("CyclicLR scheduler is used. Optimizer is set to {}".format(self.optimizer.upper()))
self.model = model
self.prediction_mode = prediction_mode
if self.prediction_mode is None:
raise AttributeError("Prediction mode must be specified (binary or continuous)")
self.prottype = protein_embedding_type
if self.prottype is None:
raise AttributeError("Protein embedding type must be specified ( LSTM, or ALBERT)")
self.uniprot2triplets = uniprot2triplets
self.ikey2smiles = ikey2smiles
self.ikey2mol = ikey2mol
self.berttokenizer = berttokenizer
if self.model is None:
raise AttributeError("model not provided")
if self.uniprot2triplets is None:
raise AttributeError("dict uniprot2triplets not provided")
if self.ikey2mol is None:
raise AttributeError("dict ikey2mol not provided")
if self.berttokenizer is None:
raise AttributeError("Bert tokenizer not provided")
def train(self, edges, train_evaluator, dev_edges, dev_evaluator,test_edges, test_evaluator, checkpoint_dir):
# ----------------------------------
# functions to process protein sequence
# ----------------------------------
# for protein sequence in triplets
def get_repr_from_pairs_3(pairs):
chem_repr = [(self.ikey2smiles[pair[0]], self.ikey2mol[pair[0]]) for pair in pairs]
prot_repr = torch.stack(
[torch.tensor(berttokenizer.encode(self.uniprot2triplets[pair[1]])) for pair in pairs])
return (chem_repr, prot_repr)
# ----------------------------------
# set up data/parameters/models
# ----------------------------------
uniprot2triplets=self.uniprot2triplets
ikey2smiles=self.ikey2smiles
ikey2mol=self.ikey2mol
berttokenizer=self.berttokenizer
#...............
model=self.model
parameters = list(self.model.parameters())
if self.optimizer=='adam':
optimizer = torch.optim.Adam(parameters,lr=self.lr,weight_decay=self.l2)
logging.info("Optimizer {}, LR {}, Weight Decay {}".format(self.optimizer, self.lr, self.l2))
elif self.optimizer=='sgd':
optimizer = torch.optim.SGD(parameters,lr=self.lr,weight_decay=self.l2)
logging.info("Optimizer {}, LR {}, Weight Decay {}".format(self.optimizer, self.lr, self.l2))
if self.scheduler=='cosineannealing':
tmax=10
scheduler=torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,T_max=tmax)
logging.info("Scheduler {}, T_max {}".format(self.scheduler, tmax))
elif self.scheduler=='cyclic':
max_lr=self.lr
base_lr=self.lr*0.01
scheduler= torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=base_lr, max_lr=max_lr)
logging.info("Scheduler {}, base_lr {:.8f}, max_lr {:.8f} ".format(self.scheduler, base_lr, max_lr))
# ..............
train_pairs, train_labels=load_data(edges,datatype='train',ikey2mol=ikey2mol)
dev_pairs, dev_labels=load_data(dev_edges,datatype='dev',ikey2mol=ikey2mol)
test_pairs, test_labels = load_data(test_edges, datatype='dev', ikey2mol=ikey2mol)
# ..............
best_target_metric=-np.inf
best_epoch=0
step = 0
total_loss = 0
batch_size = self.batch_size
batch_per_epoch=int(np.ceil(len(train_labels)/batch_size))
record_dict = {'epoch':[],
'total_loss':[],
'train_f1':[],
'train_auc':[],
'train_aupr':[],
'train_accu':[],
'train_recall':[],
'dev_f1':[],
'dev_auc':[],
'dev_aupr':[],
'dev_accu':[],
'dev_recall':[]
}
print("Epoch\tData\tF1\tAUC\tAUPR")
loss_train = []
f1_train = []
auc_train = []
aupr_train = []
accu_train=[]
recall_train = []
f1_dev = []
auc_dev = []
aupr_dev = []
accu_dev=[]
recall_dev=[]
f1_test = []
auc_test = []
aupr_test = []
accu_test=[]
recall_test=[]
# ----------------------------------
# training
# ----------------------------------
for epoch in range(1, self.train_epoch + 1):
model.train()
train_data_idxs=list(range(len(train_labels)))
np.random.shuffle(train_data_idxs)
epoch_loss_total = 0
epoch_loss = []
batch_prep_time=0;batch_train_time=0;batch_optim_time=0
logging.info("Epoch {0} started".format(epoch))
for batch_ in range(batch_per_epoch):
stime=time.time()
choices = train_data_idxs[batch_*batch_size:(batch_+1)*batch_size]
if len(choices)==batch_size:
batch_labels = torch.tensor([train_labels[idx] for idx in choices]).cuda()
# ----------------------------------
# process input
# ----------------------------------
batch_train_pairs = [train_pairs[idx] for idx in choices]
batch_chem_repr, batch_prot_repr = get_repr_from_pairs_3(batch_train_pairs)
batch_chem_embed = load_from_mol_tuple(batch_chem_repr)
if isinstance(batch_chem_embed, Variable) and torch.cuda.is_available():
batch_chem_embed = batch_chem_embed.cuda()
if isinstance(batch_prot_repr, Variable) and torch.cuda.is_available():
batch_prot_repr = batch_prot_repr.cuda()
batch_input = {'protein': batch_prot_repr,'ligand': batch_chem_embed}
batch_prep_t=time.time() - stime
batch_prep_time+=batch_prep_t
stime=time.time()
# ----------------------------------
# get prediction score
# ----------------------------------
#print(batch_labels)
batch_logits = model(batch_input)
print(batch_logits)
batch_labels = batch_labels.float()
#pres = batch_logits.argmax(dim=-1)
#batch_logits = batch_logits[:,1]
#print(batch_logits)
#batch_labels=batch_labels.unsqueeze(1)
#batch_logits=batch_logits.unsqueeze(1)
batch_train_t=time.time() - stime
batch_train_time+=batch_train_t
stime=time.time()
# ----------------------------------
# loss
# ----------------------------------
#loss_fn = torch.nn.CrossEntropyLoss()
loss_fn = torch.nn.BCEWithLogitsLoss()
batch_logits = batch_logits.squeeze(dim=-1)
#batch_labels = batch_labels.reshape(-1,2)
#batch_logits = batch_logits.reshape(32,-1)
loss = loss_fn(batch_logits, batch_labels)
epoch_loss.append(loss.detach().cpu().numpy())
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
step += 1
batch_optim_t=time.time() - stime
batch_optim_time+=batch_optim_t
total_loss+=loss.item()
epoch_loss_total += loss.item()
logging.info("Epoch {}: Loss {}".format(epoch,loss.item()))
# ----------------------------------
# evaluation
# ----------------------------------
trainmetrics=train_evaluator.eval(model,train_pairs,train_labels,epoch)
devmetrics=dev_evaluator.eval(model,dev_pairs,dev_labels,epoch)
testmetrics=test_evaluator.eval(model,test_pairs,test_labels,epoch)
# ----------------------------------
# save records
# ----------------------------------
loss_train.append(epoch_loss)
f1_train.append(trainmetrics[0])
auc_train.append(trainmetrics[1])
aupr_train.append(trainmetrics[2])
accu_train.append(trainmetrics[3])
recall_train.append(trainmetrics[4])
f1_dev.append(devmetrics[0])
auc_dev.append(devmetrics[1])
aupr_dev.append(devmetrics[2])
accu_dev.append(devmetrics[3])
recall_dev.append(devmetrics[4])
f1_test.append(testmetrics[0])
auc_test.append(testmetrics[1])
aupr_test.append(testmetrics[2])
accu_test.append(testmetrics[3])
recall_test.append(testmetrics[4])
np.save(checkpoint_dir+'loss_train.npy',loss_train)
np.save(checkpoint_dir+'f1_train.npy',f1_train)
np.save(checkpoint_dir+'auc_train.npy',auc_train)
np.save(checkpoint_dir+'aupr_train.npy',aupr_train)
np.save(checkpoint_dir + 'accu_train.npy', accu_train)
np.save(checkpoint_dir + 'recall_train.npy', recall_train)
np.save(checkpoint_dir+'f1_dev.npy',f1_dev)
np.save(checkpoint_dir+'auc_dev.npy',auc_dev)
np.save(checkpoint_dir+'aupr_dev.npy',aupr_dev)
np.save(checkpoint_dir + 'accu_dev.npy', accu_dev)
np.save(checkpoint_dir + 'recall_dev.npy', recall_dev)
np.save(checkpoint_dir + 'f1_test.npy', f1_test)
np.save(checkpoint_dir + 'auc_test.npy', auc_test)
np.save(checkpoint_dir + 'aupr_test.npy', aupr_test)
np.save(checkpoint_dir + 'accu_test.npy', accu_test)
np.save(checkpoint_dir + 'recall_test.npy', recall_test)
record_dict['epoch'].append(epoch)
record_dict['total_loss'].append(loss.item())
record_dict['train_f1'].append(trainmetrics[0])
record_dict['train_auc'].append(trainmetrics[1])
record_dict['train_aupr'].append(trainmetrics[2])
record_dict['train_accu'].append(trainmetrics[3])
record_dict['train_recall'].append(trainmetrics[4])
record_dict['dev_f1'].append(devmetrics[0])
record_dict['dev_auc'].append(devmetrics[1])
record_dict['dev_aupr'].append(devmetrics[2])
record_dict['dev_accu'].append(devmetrics[3])
record_dict['dev_recall'].append(devmetrics[4])
target_metric = devmetrics[0] #f1 for binary
if target_metric > best_target_metric:
best_target_metric = target_metric #new best spearman correlation
best_epoch = epoch
path = os.path.join(self.checkpoint_dir, "epoch_{0}".format(epoch))
if not os.path.exists(path):
os.mkdir(path)
torch.save(model.state_dict(), os.path.join(path, 'model.dat'))
logging.info("New best metric {:.6f} at epoch {}".format(target_metric,best_epoch))
logging.info("Epoch {}: BatchPrepTime {:.1f}, BatchTrainTime {:.1f}, BatchOptimTime {:.1f}".format(epoch,
batch_prep_time,batch_train_time,batch_optim_time))
logging.info("DevMetric {:.6f} at epoch {}. Current best DevMetric {:.6f} at epoch {}".format(
target_metric,epoch,best_target_metric,best_epoch))
print("Best DevMetric {:.6f} at epoch {}".format(best_target_metric,best_epoch))
return record_dict,loss_train,f1_train,auc_train,aupr_train,recall_train,f1_dev,auc_dev,aupr_dev,accu_train,accu_dev,recall_dev