-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathexample_read.py
72 lines (64 loc) · 2.95 KB
/
example_read.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env python
# ! ## File: example_read.py
# ! Example of using dynSIS with edges list file and NetworkX
# ! ## See README.md for more information and use
# !-----------------------------------------------------------------------------
# ! SIS epidemic model algorithm based on the article
# ! Computer Physics Communications 219C (2017) pp. 303-312
# ! "Optimized Gillespie algorithms for the simulation of
# ! Markovian epidemic processes on large and heterogeneous networks"
# ! Copyright (C) 2017 Wesley Cota, Silvio C. Ferreira
# !
# ! Please cite the above cited paper (available at <http://dx.doi.org/10.1016/j.cpc.2017.06.007> )
# ! as reference to our code.
# !
# ! This program is free software: you can redistribute it and/or modify
# ! it under the terms of the GNU General Public License as published by
# ! the Free Software Foundation, either version 3 of the License, or
# ! (at your option) any later version.
# !
# ! This program is distributed in the hope that it will be useful,
# ! but WITHOUT ANY WARRANTY; without even the implied warranty of
# ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# ! GNU General Public License for more details.
# !
# ! You should have received a copy of the GNU General Public License
# ! along with this program. If not, see <http://www.gnu.org/licenses/>.
# !-----------------------------------------------------------------------------
# ! Author : Wesley Cota
# ! Email : [email protected]
# ! Date : 27 Mar 2017
# ! Version : 1.0
# !-----------------------------------------------------------------------------
# ! See README.md for more details
# ! This code is available at <https://github.com/wcota/dynSIS-networkx>
# ! For performance, see <https://github.com/wcota/dynSIS> (Fortran implementation)
# ! For pure Python, see <https://github.com/wcota/dynSIS-py>
import networkx as nx
import dynSIS
import sys
if len(sys.argv) < 3:
print('You must enter input and output names as arguments!')
exit()
fnInput = sys.argv[1]
fnOutput = sys.argv[2]
dynp_sam = int(input('How much dynamics samples? '))
dynp_lb = float(input('Value of infection rate lambda (mu is defined as equal to 1) '))
dynp_tmax = int(input('Maximum time steps (it stops if the absorbing state is reached) '))
dynp_pINI = float(input('Fraction of infected vertices on the network as initial condition (is random \
for each sample) '))
G = nx.Graph()
# Read the network
with open(fnInput, 'rt') as f:
for i in f:
li = i.strip().split(',')
G.add_edge(int(li[0]),int(li[1]))
# Run dynamics
dynSIS.dyn_run(G, fnOutput, dynp_sam, dynp_lb, dynp_tmax, dynp_pINI)
print('')
print('Everything ok!',True)
print('Input file (edges list): '+ fnInput)
print('Output file: '+ fnOutput)
print('')
print('*****Algorithm used: Optimized Gillespie Algorithm for SIS (SIS-OGA, NetworkX)*****')
print('Codes available at <https://github.com/wcota/dynSIS>.')