forked from AlexanderParkin/ChaLearn_liveness_challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopts.py
88 lines (77 loc) · 3.11 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse, os, json
import torch
import torchvision as tv
from utils import transforms
def get_opts():
opt = argparse.Namespace()
opt.task_name = ''
opt.exp_name = 'exp1_2stagev2_stage2_seed2'
opt.fold = 1
opt.data_root = '/ssd/a.parkin/CASIA-SURF/'
opt.data_list = 'data/lists/folds_by_fakes/fold{fold_n}/'.format(fold_n=opt.fold)
opt.out_root = 'data/opts/'
opt.out_path = os.path.join(opt.out_root,opt.exp_name,'fold{fold_n}'.format(fold_n=opt.fold))
### Dataloader options ###
opt.nthreads = 32
opt.batch_size = 128 #280
opt.ngpu = 4
### Learning ###
opt.freeze_epoch = 0
opt.optimizer_name = 'Adam'
opt.weight_decay = 0
opt.lr = 2e-5
opt.lr_decay_lvl = 0.5
opt.lr_decay_period = 50
opt.lr_type = 'cosine_repeat_lr'
opt.num_epochs=50
opt.resume = 'model_29.pth'
opt.debug = 0
### Other ###
opt.manual_seed = 704
opt.log_batch_interval=10
opt.log_checkpoint = 1
opt.net_type = 'ResNet34DLAS_A'
opt.pretrained = 'mcs2018'
opt.classifier_type = 'linear'
opt.loss_type= 'cce'
opt.alpha_scheduler_type = None
opt.nclasses = 2
opt.fake_class_weight = 1
opt.visdom_port = 8097
opt.git_commit_sha = '3ab79d6c8ec9b280f5fbdd7a8a363a6191fd65ce'
opt.train_transform = tv.transforms.Compose([
transforms.MergeItems(True, p=0.1),
#transforms.LabelSmoothing(eps=0.1, p=0.2),
transforms.CustomRandomRotation(30, resample=2),
transforms.CustomResize((125,125)),
tv.transforms.RandomApply([
transforms.CustomCutout(1, 25, 75)],p=0.1),
#transforms.CustomGaussianBlur(max_kernel_radius=3, p=0.2),
transforms.CustomRandomResizedCrop(112, scale=(0.5, 1.0)),
transforms.CustomRandomHorizontalFlip(),
tv.transforms.RandomApply([
transforms.CustomColorJitter(0.25,0.25,0.25,0.125)],p=0.2),
transforms.CustomRandomGrayscale(p=0.1),
transforms.CustomToTensor(),
transforms.CustomNormalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])
])
opt.test_transform = tv.transforms.Compose([
transforms.CustomResize((125,125)),
transforms.CustomRotate(0),
transforms.CustomRandomHorizontalFlip(p=0),
transforms.CustomCrop((112,112), crop_index=0),
transforms.CustomToTensor(),
transforms.CustomNormalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010])
])
return opt
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Options')
parser.add_argument('--savepath', type=str, default = 'data/opts/', help = 'Path to save options')
conf = parser.parse_args()
opts = get_opts()
save_dir = os.path.join(conf.savepath, opts.exp_name)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
filename = os.path.join(save_dir,opts.exp_name + '_' + 'fold{0}'.format(opts.fold) + '_' + opts.task_name+'.opt')
torch.save(opts, filename)
print('Options file was saved to '+filename)