-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
atl06_to_atl11.py
329 lines (285 loc) · 11 KB
/
atl06_to_atl11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# ---
# jupyter:
# jupytext:
# cell_metadata_filter: title,-all
# formats: ipynb,py:hydrogen
# text_representation:
# extension: .py
# format_name: hydrogen
# format_version: '1.3'
# jupytext_version: 1.11.4
# kernelspec:
# display_name: deepicedrain
# language: python
# name: deepicedrain
# ---
# %% [markdown]
# # **ATL06 to ATL11**
#
# Converting the ICESat-2 ATL06 (Land Ice Height) product to ATL11 (Land Ice Height Changes).
# Also convert the ATL11 file format from HDF5 to [Zarr](https://zarr.readthedocs.io/).
# %%
import os
import glob
import shutil
import sys
import subprocess
import dask
import dask.distributed
import h5py
import intake
import itertools
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pyproj
import tqdm
import xarray as xr
import zarr
import deepicedrain
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
# %%
client = dask.distributed.Client(n_workers=8, threads_per_worker=1)
client
# %% [markdown]
# ## Download ATL11 from [NSIDC](https://doi.org/10.5067/ATLAS/ATL11.003) up to cycle 9
# %%
# Note, need to downgrade using `pip install fsspec==0.7.4 intake-xarray==0.3.2`
# Get list of official ATL11 files to download
catalog = intake.open_catalog("deepicedrain/atlas_catalog.yaml")
with open(file="ATL11_to_download.txt", mode="r") as f:
urlpaths = f.readlines()
dates: set = {url.split("/")[-2] for url in urlpaths}
len(dates)
# %%
# Submit download jobs to Client
futures = []
for date in dates:
# date = "2019.11.01" # sorted(dates)[-1]
source = catalog.icesat2atl11(date=date)
future = client.submit(
func=source.discover, key=f"download-{date}"
) # triggers download of the file(s), or loads from cache
futures.append(future)
# break
# source.urlpath
# %%
# Check download progress here, https://stackoverflow.com/a/37901797/6611055
responses = [
f.result()
for f in tqdm.tqdm(
iterable=dask.distributed.as_completed(futures=futures), total=len(futures)
)
]
# %%
# %% [markdown]
# ## Process ATL06 to ATL11 for cycle 9 or newer
# %%
# Create ATL06_to_ATL11 processing script, if not already present
if not os.path.exists("ATL06_to_ATL11_Antarctica.sh"):
# Prepare string to write into ATL06_to_ATL11_Antarctica.sh bash script
writelines = []
# find last cycle for each reference ground track and each orbital segment
iterable = itertools.product(range(1387, 0, -1), [10, 11, 12])
for referencegroundtrack, orbitalsegment in tqdm.tqdm(
iterable=iterable, total=1387 * 3
):
rgt, ost = referencegroundtrack, orbitalsegment
last_cycle_file: str = max(
glob.glob(f"ATL06.00X/{rgt:04d}/ATL06*_*_{rgt:04d}??{ost:02d}_*.h5")
)
last_cycle: int = int(last_cycle_file[-14:-12])
if last_cycle > 8: # Only process those with Cycle 9 and newer locally
writelines.append(
f"ATL06_to_ATL11.py"
f" {referencegroundtrack:04d} {orbitalsegment}"
f" --cycles 03 {last_cycle:02d}"
f" --Release 3"
f" --directory 'ATL06.00X/{referencegroundtrack:04d}/'"
f" --out_dir ATL11.003\n"
)
fname = f"ATL11_{referencegroundtrack:04d}{orbitalsegment}_0308_003_01.h5"
if not os.path.exists(f"ATL11.003/official/{fname}"):
try:
shutil.move(src=f"ATL11.003/{fname}", dst="ATL11.003/official")
except FileNotFoundError:
pass
# else: # Just use official NSIDC version for Cycle 8 or older
# pass
writelines.sort() # sort writelines in place
# Finally create the bash script
with open(file="ATL06_to_ATL11_Antarctica.sh", mode="w") as f:
f.writelines(writelines)
# %% [markdown]
# Now use [GNU parallel](https://www.gnu.org/software/parallel/parallel_tutorial.html) to run the script in parallel.
# Will take about 1 week to run on 64 cores.
#
# Reference:
#
# - O. Tange (2018): GNU Parallel 2018, Mar 2018, ISBN 9781387509881, DOI https://doi.org/10.5281/zenodo.1146014
# %%
# !head -n 2080 ATL06_to_ATL11_Antarctica.sh > ATL06_to_ATL11_Antarctica_1.sh
# !tail -n +2081 ATL06_to_ATL11_Antarctica.sh > ATL06_to_ATL11_Antarctica_2.sh
# %%
# !PYTHONPATH=`pwd` PYTHONWARNINGS="ignore" parallel -a ATL06_to_ATL11_Antarctica_1.sh --bar --resume-failed --results logdir --joblog log1 --jobs 60 --load 90% > /dev/null
# %%
# df_log = pd.read_csv(filepath_or_buffer="log", sep="\t")
# df_log.query(expr="Exitval > 0")
# %% [markdown]
# ## Convert from HDF5 to Zarr format
#
# For faster data access speeds!
# We'll collect the data for each Reference Ground Track,
# and store it inside a Zarr format,
# specifically one that can be used by xarray.
# See also https://xarray.pydata.org/en/v0.18.2/user-guide/io.html#zarr.
#
# Grouping hierarchy:
# - Reference Ground Track (1-1387)
# - Orbital Segments (10, 11, 12)
# - Laser Pairs (pt1, pt2, pt3)
# - Attributes (longitude, latitude, h_corr, delta_time, etc)
# %%
max_cycles: int = max(int(f[-12:-10]) for f in glob.glob("ATL11.003/*.h5"))
print(f"{max_cycles} ICESat-2 cycles available")
# %%
@dask.delayed
def open_ATL11(atl11file: str, group: str) -> xr.Dataset:
"""
Opens up an ATL11 file using xarray and does some light pre-processing:
- Mask values using _FillValue ??
- Convert attribute format from binary to str
"""
ds: xr.Dataset = xr.open_dataset(
filename_or_obj=atl11file, group=group, engine="h5netcdf", mask_and_scale=True
)
# Change xarray.Dataset attributes from binary to str type
# fixes issue when saving to Zarr format later
# TypeError: Object of type bytes is not JSON serializable
for key, variable in ds.variables.items():
assert isinstance(ds[key].DIMENSION_LABELS, np.ndarray)
ds[key].attrs["DIMENSION_LABELS"] = (
ds[key].attrs["DIMENSION_LABELS"].astype(str)
)
try:
ds.attrs["ATL06_xover_field_list"] = ds.attrs["ATL06_xover_field_list"].astype(
str
)
except KeyError:
pass
return ds
# %% [markdown]
# ### Light pre-processing
#
# - Reproject longitude/latitude to EPSG:3031 x/y
# - Mask out low quality height data
# %%
@dask.delayed
def set_xy_and_mask(ds):
# Calculate the EPSG:3031 x/y projection coordinates
ds["x"], ds["y"] = deepicedrain.lonlat_to_xy(
longitude=ds.longitude, latitude=ds.latitude
)
# Set x, y, x_atc and y_atc as coords of the xarray.Dataset instead of lon/lat
ds: xr.Dataset = ds.set_coords(names=["x", "y", "x_atc", "y_atc"])
ds: xr.Dataset = ds.reset_coords(names=["longitude", "latitude"])
# Mask out low quality height data
ds["h_corr"]: xr.DataArray = ds.h_corr.where(cond=ds.fit_quality == 0)
return ds
# %%
# Consolidate together Antarctic orbital segments 10, 11, 12 into one file
# Also consolidate all three laser pairs pt1, pt2, pt3 into one file
atl11_dict = {}
for rgt in tqdm.trange(1387):
atl11files: list = glob.glob(f"ATL11.003/ATL11_{rgt+1:04d}1?_????_00?_0?.h5")
try:
assert len(atl11files) == 3 # Should be 3 files for Orbital Segments 10,11,12
except AssertionError:
# Manually handle exceptional cases
if len(atl11files) != 2: # or rgt + 1 not in [1036]:
raise ValueError(
f"{rgt+1} only has {len(atl11files)} ATL11 files instead of 3"
)
if atl11files:
pattern: dict = intake.source.utils.reverse_format(
format_string="ATL11.003/ATL11_{referencegroundtrack:4}{orbitalsegment:2}_{cycles:4}_{version:3}_{revision:2}.h5",
resolved_string=sorted(atl11files)[1], # get the '11' one, not '10' or '12'
)
zarrfilepath: str = "ATL11.003z123/ATL11_{referencegroundtrack}1x_{cycles}_{version}_{revision}.zarr".format(
**pattern
)
atl11_dict[zarrfilepath] = atl11files
# %%
# Get proper data encoding from a sample ATL11 file
atl11file: str = atl11files[0]
root_ds = open_ATL11(atl11file=atl11file, group="pt2").compute()
reference_surface_ds = open_ATL11(atl11file=atl11file, group="pt2/ref_surf").compute()
ds: xr.Dataset = xr.combine_by_coords(data_objects=[root_ds, reference_surface_ds])
# Convert variables to correct datatype
encoding: dict = {}
df: pd.DataFrame = pd.read_csv(
"https://raw.githubusercontent.com/suzanne64/ATL11/master/ATL11/package_data/ATL11_output_attrs.csv"
)[["field", "datatype"]]
df = df.set_index("field")
for var in ds.variables:
desired_dtype = str(df.datatype[var]).lower()
if ds[var].dtype.name != desired_dtype:
try:
desired_dtype = desired_dtype.split(var)[1].strip()
except IndexError:
pass
encoding[var] = {"dtype": desired_dtype}
# %%
# Gather up all the dask.delayed conversion tasks to store data into Zarr!
stores = []
for zarrfilepath, atl11files in tqdm.tqdm(iterable=atl11_dict.items()):
zarr.open(store=zarrfilepath, mode="w") # Make a new file/overwrite existing
datasets = []
for atl11file in atl11files: # Orbital Segments: 10, 11, 12
for pair in ("pt1", "pt2", "pt3"): # Laser pairs: pt1, pt2, pt3
# Attributes: longitude, latitude, h_corr, delta_time, etc
root_ds = open_ATL11(atl11file=atl11file, group=pair)
reference_surface_ds = open_ATL11(
atl11file=atl11file, group=f"{pair}/ref_surf"
)
ds = dask.delayed(obj=xr.combine_by_coords)(
data_objects=[root_ds, reference_surface_ds]
)
# Light pre-processing
ds = set_xy_and_mask(ds=ds)
_rgt_array = dask.delayed(obj=np.full)(
shape=ds.ref_pt.shape,
fill_value=atl11file.split("_")[1][:4],
dtype=np.int8,
)
ds = dask.delayed(obj=ds.assign_coords)(
referencegroundtrack=("ref_pt", _rgt_array)
)
datasets.append(ds)
dataset = dask.delayed(obj=xr.concat)(objs=datasets, dim="ref_pt")
store_task = dataset.to_zarr(
store=zarrfilepath, mode="w", encoding=encoding, consolidated=True
)
stores.append(store_task)
# %%
# Do all the HDF5 to Zarr conversion! Should take about 1 hour to run
# Check conversion progress here, https://stackoverflow.com/a/37901797/6611055
futures = [client.compute(store_task) for store_task in stores]
for _ in tqdm.tqdm(
iterable=dask.distributed.as_completed(futures=futures), total=len(stores)
):
pass
# %%
ds = xr.open_dataset(zarrfilepath, engine="zarr", backend_kwargs={"consolidated": True})
ds.h_corr.__array__().shape
# %% [raw]
# # Note, this raw conversion below takes about 11 hours
# # because HDF5 files work on a single thread...
# for atl11file in tqdm.tqdm(iterable=sorted(glob.glob("ATL11.003/*.h5"))):
# name = os.path.basename(p=os.path.splitext(p=atl11file)[0])
# zarr.convenience.copy_all(
# source=h5py.File(name=atl11file, mode="r"),
# dest=zarr.open_group(store=f"ATL11.003z/{name}.zarr", mode="w"),
# if_exists="skip",
# without_attrs=True,
# )