-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
bfab3d5
commit b144576
Showing
1 changed file
with
86 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
import copy | ||
|
||
import numpy as np | ||
|
||
from Test_Parameter import Test_Parameter | ||
from Module import Module | ||
|
||
|
||
class Pooling(Module): | ||
def __init__(self, row, col, poolsize, poolstride, mode="max"): | ||
self.parameter = Test_Parameter((row, col)) | ||
self.inputs = [] | ||
self.data = None | ||
self.poolsize = poolsize | ||
self.poolstride = poolstride | ||
self.mode = mode | ||
self.maxpos = [] | ||
|
||
def forward(self, x): | ||
self.inputs.append(x) | ||
if self.mode == "max": | ||
self.data = self.pooling() | ||
return self | ||
|
||
def backward(self, grad): | ||
temp = copy.copy(self.inputs) | ||
in_row, in_col = np.shape(self.inputs) | ||
for i in range(0, in_row): | ||
for j in range(0, in_col): | ||
if self.maxpos.count((i, j)) == 0: | ||
temp[i][j] = 0 | ||
self.parameter.gradient = temp | ||
if isinstance(self.inputs[0], Module): | ||
self.inputs[0].backward(self.parameter.gradient) | ||
|
||
def __call__(self, x): | ||
return self.forward(x) | ||
|
||
def pooling(self): | ||
"""INPUTS: | ||
inputMap - input array of the pooling layer | ||
poolSize - X-size(equivalent to Y-size) of receptive field | ||
poolStride - the stride size between successive pooling squares | ||
OUTPUTS: | ||
outputMap - output array of the pooling layer | ||
Padding mode - 'edge' | ||
""" | ||
# inputMap sizes | ||
in_row, in_col = np.shape(self.inputs) | ||
|
||
# outputMap sizes | ||
out_row, out_col = int(np.floor(in_row / self.poolstride)), int(np.floor(in_col / self.poolstride)) | ||
row_remainder, col_remainder = np.mod(in_row, self.poolstride), np.mod(in_col, self.poolstride) | ||
if row_remainder != 0: | ||
out_row += 1 | ||
if col_remainder != 0: | ||
out_col += 1 | ||
outputMap = np.zeros((out_row, out_col)) | ||
|
||
# padding | ||
temp_map = np.lib.pad(self.inputs, ((0, self.poolsize - row_remainder), (0, self.poolsize - col_remainder)), 'edge') | ||
|
||
# max pooling | ||
if self.mode == "max": | ||
for r_idx in range(0, out_row): | ||
for c_idx in range(0, out_col): | ||
startX = c_idx * self.poolstride | ||
startY = r_idx * self.poolstride | ||
poolField = temp_map[startY:startY + self.poolsize, startX:startX + self.poolsize] | ||
poolOut = np.max(poolField) | ||
temp = np.where(self.inputs == poolOut) | ||
self.maxpos.append((temp[0][0], temp[1][0])) | ||
outputMap[r_idx, c_idx] = poolOut | ||
elif self.mode == "mean": | ||
for r_idx in range(0, out_row): | ||
for c_idx in range(0, out_col): | ||
startX = c_idx * self.poolstride | ||
startY = r_idx * self.poolstride | ||
poolField = temp_map[startY:startY + self.poolsize, startX:startX + self.poolsize] | ||
poolOut = np.sum(poolField) | ||
outputMap[r_idx, c_idx] = poolOut / self.poolsize / self.poolsize | ||
|
||
# retrun outputMap | ||
return outputMap |