-
Notifications
You must be signed in to change notification settings - Fork 0
/
myDataset.py
204 lines (170 loc) · 6.92 KB
/
myDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch.utils.data as data
import torch
from PIL import Image
import os
import os.path
import numpy as np
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.sampler import Sampler, RandomSampler, SequentialSampler
import itertools
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
# Note that, the sort() can change the label index
# using sort(): {'colorization': 0, 'nature': 1}
def find_classes(dir):
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(dir, class_to_idx):
images = []
num_in_class = [] # the number of samples in each class
images_txt = []
dir = os.path.expanduser(dir)
for target in sorted(os.listdir(dir)):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
num = 0
for fname in sorted(fnames):
if is_image_file(fname):
path = os.path.join(root, fname)
item = (path, class_to_idx[target])
images.append(item)
images_txt.append(target + '/' + fname)
num += 1
num_in_class.append(num)
return images, num_in_class, images_txt
def pil_loader(path, mode='RGB'):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
if mode == 'L':
return img.convert('L') # convert image to grey
elif mode == 'RGB':
return img.convert('RGB') # convert image to rgb image
elif mode == 'HSV':
return img.convert('HSV')
# elif mode == 'LAB':
# return RGB2Lab(img)
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_loader(path, mode):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path, mode)
class MyDataset(data.Dataset):
"""A generic data loader where the images are arranged in this way: ::
root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
Args:
root (string): Root directory path.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an image given its path.
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
imgs (list): List of (image path, class_index) tuples
"""
def __init__(self, args, transform=None, target_transform=None,
loader=default_loader):
classes, class_to_idx = find_classes(args.dataroot)
imgs, num_in_class, images_txt = make_dataset(args.dataroot, class_to_idx)
if len(imgs) == 0:
raise(RuntimeError("Found 0 images in subfolders of: " + args.dataroot + "\n"
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.mode = args.img_mode
self.input_nc = args.input_nc
self.imgs = imgs
self.num_in_class = num_in_class
self.images_txt = images_txt
self.classes = classes
self.class_to_idx = class_to_idx
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
path, target = self.imgs[index]
img = self.loader(path, self.mode)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.imgs)
class RandomBalancedSampler(Sampler):
def __init__(self, data_source):
print('Using RandomBalancedSampler...')
self.data_source = data_source
self.num_in_class = data_source.num_in_class
def __iter__(self):
num_in_class = self.num_in_class
a_perm = torch.randperm(num_in_class[0]).tolist()
b_perm = [x + num_in_class[0] for x in torch.randperm(num_in_class[1]).tolist()]
if num_in_class[0] > num_in_class[1]:
a_perm = a_perm[0:num_in_class[1]]
elif num_in_class[0] < num_in_class[1]:
b_perm = b_perm[0:num_in_class[0]]
assert len(a_perm) == len(b_perm)
return iter(next(it) for it in \
itertools.cycle([iter(a_perm), iter(b_perm)]))
def __len__(self):
return min(self.num_in_class) * 2
# each two element is paired, and order is shuffled for each epoch (shuffle=True)
# the number of samples in two class is same
class PairedSampler(Sampler):
def __init__(self, data_source):
print('Using PairedSampler...')
self.data_source = data_source
self.num_in_class = data_source.num_in_class
def __iter__(self):
num_in_class = self.num_in_class
a_perm = torch.randperm(num_in_class[0]).tolist()
b_perm = [x + num_in_class[0] for x in a_perm]
return iter(next(it) for it in \
itertools.cycle([iter(a_perm), iter(b_perm)]))
def __len__(self):
return min(self.num_in_class) * 2
class DataLoaderHalf(DataLoader):
def __init__(self, dataset,
shuffle=False, batch_size=1, half_constraint=False, sampler_type='RandomBalancedSampler', drop_last=True,
num_workers=0, pin_memory=False):
if half_constraint:
if sampler_type == 'PairedSampler':
sampler = PairedSampler(dataset)
else:
sampler = RandomBalancedSampler(dataset)
else:
if shuffle:
sampler = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
super(DataLoaderHalf, self). \
__init__(dataset, batch_size, None, sampler, \
None, num_workers, pin_memory=pin_memory, drop_last=drop_last)