forked from open-mpi/ompi-collectives-tuning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcoltune_analyze.py
executable file
·389 lines (343 loc) · 13.6 KB
/
coltune_analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#!/usr/bin/env python
# Copyright (c) 2020 Amazon.com, Inc. or its affiliates. All Rights
# reserved.
#
# $COPYRIGHT$
#
# Additional copyrights may follow
#
# $HEADER$
#
import os
import sys
from common import Params
imb_collectives = ["reduce_scatter_block"]
def coll_id_from_name(collective):
switch = {
"allgather": 0,
"allgatherv": 1,
"allreduce": 2,
"alltoall": 3,
"alltoallv": 4,
"alltoallw": 5,
"barrier": 6,
"bcast": 7,
"exscan": 8,
"gather": 9,
"gatherv": 10,
"reduce": 11,
"reduce_scatter": 12,
"reduce_scatter_block": 13,
"scan": 14,
"scatter": 15,
"scatterv": 16,
}
id = switch.get(collective, "Invalid collective")
return id
def load_single_result(file_name, collective):
if collective in imb_collectives:
return load_imb_single_result(file_name, collective)
else:
return load_omb_single_result(file_name, collective)
def load_imb_single_result(file_name, collective):
try:
f = open(file_name)
except Exception as e:
print("Error, cannot find file "+file_name+". Exiting..")
sys.exit()
l = f.readline()
while l.find("Benchmarking") < 0:
l = f.readline()
if l == "":
print("Error parsing "+file_name+" No data found. Exiting..")
sys.exit()
result = []
l = f.readline()
l = f.readline()
l = f.readline()
pattern_arr = l.split()
if pattern_arr == ['#repetitions', 't_min[usec]', 't_max[usec]', 't_avg[usec]']:
expected_len = 4
avg_lat_column = 3
elif pattern_arr == ['#bytes', '#repetitions', 't[usec]', 'Mbytes/sec', 'defects']:
expected_len = 5
avg_lat_column = 2
elif pattern_arr == ['#bytes', '#repetitions', 't_min[usec]', 't_max[usec]', 't_avg[usec]']:
expected_len = 5
avg_lat_column = 4
elif pattern_arr == ['#bytes', '#repetitions', 't_min[usec]', 't_max[usec]', 't_avg[usec]', 'defects']:
expected_len = 6
avg_lat_column = 4
elif pattern_arr == ['#bytes', '#repetitions', 't_min[usec]', 't_max[usec]', 't_avg[usec]', 'Mbytes/sec', 'defects']:
expected_len = 7
avg_lat_column = 4
else:
print("Error parsing "+file_name+". Unknown data pattern! Exiting..")
sys.exit()
l = f.readline()
while len(l) > 0:
itmlst = l.split()
if len(itmlst) == expected_len:
try:
if collective == "barrier":
msg_siz = 0
else:
msg_siz = int(itmlst[0])
lat = float(itmlst[avg_lat_column])
result.append((msg_siz,lat))
except Exception as e:
print("Error parsing "+file_name+". Data corrupted. Exiting..")
sys.exit()
elif len(itmlst) == 0:
break
else:
print("Error parsing "+file_name+". Data format doesn't match. Exiting..")
sys.exit()
l = f.readline()
return result
def load_omb_single_result(file_name, collective):
try:
f = open(file_name)
except Exception as e:
print("Error, cannot find file "+file_name+". Exiting..")
sys.exit()
l = f.readline()
l = f.readline()
while l.find("#")==0:
l = f.readline()
if l == "":
print("Error parsing "+file_name+" No data found. Exiting..")
sys.exit()
result = []
if (collective == "barrier"):
expected_len = 1
avg_lat_column = 0
else:
expected_len = 2
avg_lat_column = 1
while len(l)>0:
itmlst = l.split()
if len(itmlst) == expected_len:
try:
if collective == "barrier":
msg_siz = 0
else:
msg_siz = int(itmlst[0])
lat = float(itmlst[avg_lat_column])
result.append((msg_siz,lat))
except Exception as e:
print("Error parsing "+file_name+". OMB Data corrupted. Exiting..")
sys.exit()
else:
print("Error parsing "+file_name+". Data format doesn't match. Exiting..")
sys.exit()
l = f.readline()
return result
class AlgResult:
def __init__(self, raw_dir, num_rank, alg, num_run, collective):
from math import sqrt
self.m_msgsizlst = []
sum_list = []
sum_sqr_list = []
for i in range(num_run):
file_name = "%s/%s_%dranks_run%d.out" %(raw_dir, alg, num_rank, i)
single_result = load_single_result(file_name, collective)
if i == 0:
for m,v in single_result:
self.m_msgsizlst.append(m)
sum_list.append(v)
sum_sqr_list.append(v*v)
else:
assert len(self.m_msgsizlst) == len(single_result)
for j,(m,v) in enumerate(single_result):
assert self.m_msgsizlst[j] == m
sum_list[j] += v
sum_sqr_list[j] += v*v
self.m_latlst = [None] * len(self.m_msgsizlst)
self.m_sgmlst = [None] * len(self.m_msgsizlst)
if num_run == 1:
self.m_latlst[:] = sum_list[:]
self.m_sgmlst[:] = 0.0
else:
for j in range(len(self.m_msgsizlst)):
self.m_latlst[j] = sum_list[j]/num_run
# Standard deviation calculation
var = (sum_sqr_list[j] - sum_list[j]*sum_list[j]/num_run)/(num_run-1)
if var <= 0:
self.m_sgmlst[j] = 0
else:
self.m_sgmlst[j] = sqrt((sum_sqr_list[j] - sum_list[j]*sum_list[j]/num_run)/(num_run-1))
def msgsizlst(self):
return self.m_msgsizlst
# Latency list
def latlst(self):
return self.m_latlst
# Sigma list (Standard deviation)
def sgmlst(self):
return self.m_sgmlst
class NumRankResult:
def __init__(self, config, num_alg, exclude_alg, two_proc_alg, raw_dir, num_rank, collective):
num_run = config.getInt("number_of_runs_per_test")
self.m_msgsizlst = None
self.m_result = {}
self.m_refalg = 0
for alg in range(num_alg + 1):
if alg in exclude_alg or (alg == two_proc_alg and num_rank > 2):
continue
self.m_result[alg] = AlgResult(raw_dir, num_rank, alg, num_run, collective)
if self.m_msgsizlst is None:
self.m_msgsizlst = self.m_result[alg].msgsizlst()[:]
else:
assert len(self.m_msgsizlst) == len(self.m_result[alg].msgsizlst())
for j,m in enumerate(self.m_msgsizlst):
assert(m == self.m_msgsizlst[j])
self.m_selectAlg = [None]*len(self.m_msgsizlst)
self.m_selectLat = [None]*len(self.m_msgsizlst)
self.m_selectSgm = [None]*len(self.m_msgsizlst)
for i in range(len(self.m_msgsizlst)):
for alg in self.m_result.keys():
if alg == 0:
continue
result = self.m_result[alg]
if (self.m_selectAlg[i] is None) or self.m_selectLat[i] > result.latlst()[i]:
self.m_selectAlg[i] = alg
self.m_selectLat[i] = result.latlst()[i]
self.m_selectSgm[i] = result.sgmlst()[i]
def msgsizlst(self):
return self.m_msgsizlst
def selectAlg(self):
return self.m_selectAlg
def selectLat(self):
return self.m_selectLat
def selectSgm(self):
return self.m_selectSgm
def refalg(self):
return self.m_refalg
def reflat(self):
return self.m_result[self.m_refalg].latlst()
def refsgm(self):
return self.m_result[self.m_refalg].sgmlst()
def alglatstr(self, alg, i):
lat = self.m_result[alg].latlst()[i]
sgm = self.m_result[alg].sgmlst()[i]
if sgm==0.0:
return "%.2f" % lat
else:
return "%.2f(%.2f)" % (lat,sgm)
def writeResult(num_rank_list, coll_result, outfil):
TITLES = ["#Nranks", "Message_size", "Best_Algorithm", "Best_Latency", "Ref_Algorithm", "Ref_Latency", "Speedup"]
WIDTHS = [10, 12, 15, 20, 15, 20, 15]
f = open(outfil, "w")
print("", file=f)
fmtlst = [None]*len(TITLES)
for i,t in enumerate(TITLES):
fmtlst[i] = "%-" + str(WIDTHS[i]) + "s"
print((fmtlst[i] % t), end=' ', file=f)
print("", file=f)
for num_rank in num_rank_list:
nod_result = coll_result[num_rank]
for i,msg_siz in enumerate(nod_result.msgsizlst()):
select_alg = nod_result.selectAlg()[i]
ref_alg = nod_result.refalg()
print((fmtlst[0] % str(num_rank)), end=' ', file=f)
print((fmtlst[1] % str(msg_siz)), end=' ', file=f)
print((fmtlst[2] % select_alg), end=' ', file=f)
print((fmtlst[3] % nod_result.alglatstr(select_alg,i)), end=' ', file=f)
print((fmtlst[4] % ref_alg), end=' ', file=f)
print((fmtlst[5] % nod_result.alglatstr(ref_alg, i)), end=' ', file=f)
selectLat = nod_result.selectLat()[i]
reflat = nod_result.reflat()[i]
ratstr = "%.2f" % (reflat/selectLat)
print((fmtlst[6] % ratstr), file=f)
def writeDetail(params, coll_result, outfil, num_alg, exclude_alg, two_proc_alg, num_run, num_rank_list):
f = open(outfil, "w")
print("%-10s" % "#Nnodes", end=' ', file=f)
print("%-12s" % "Message_size", end=' ', file=f)
for alg in range(num_alg + 1):
if alg in exclude_alg:
continue
print("%-20s" % alg, end=' ', file=f)
print("", file=f)
for num_rank in num_rank_list:
result = coll_result[num_rank]
for i,msg_siz in enumerate(result.msgsizlst()):
print("%-10d" % num_rank, end=' ', file=f)
print("%-12d" % msg_siz, end=' ', file=f)
for alg in range(num_alg + 1):
if alg in exclude_alg:
continue
elif alg == two_proc_alg and num_rank > 2:
lat_str = "No data"
else:
lat_str = result.alglatstr(alg, i)
print("%-20s" % lat_str, end=' ', file=f)
print("%-20s" % result.alglatstr(result.refalg(),i), file=f)
def writeDecision(config, dir_path, outfil):
collective_list = config.getStrlst("collectives")
num_rank_list = config.getIntlst("number_of_ranks")
num_run = config.getInt("number_of_runs_per_test")
num_coll = len(collective_list)
output_dir = dir_path+"/output"
job_dir = dir_path+"/collective_jobs"
f = open(outfil, "w")
print("%-10s" % num_coll, "# Number of collectives", file=f)
for collective in collective_list:
if not os.path.exists(dir_path+"/output/"+collective):
print("Collective "+collective+" output not detected. Exiting.")
return
params = Params( job_dir+"/"+collective+".job" )
num_alg = params.getInt("number_of_algorithms")
exclude_alg = params.getIntlst("exclude_algorithms")
two_proc_alg = -1
try:
two_proc_alg = params.getInt("two_proc_alg")
except Exception as e:
print("No two proc algorithm for "+collective)
raw_dir = dir_path+"/output/"+collective
coll_result = {}
for num_rank in num_rank_list:
coll_result[num_rank] = NumRankResult(config, num_alg, exclude_alg, two_proc_alg, raw_dir, num_rank, collective)
writeResult(num_rank_list, coll_result, raw_dir+"/best.out")
print("Result wrote for "+collective+" to "+collective+"/best.out")
print("%-10s" % coll_id_from_name(collective), "# Collective ID for", collective, file=f)
com_sizes = len(num_rank_list)
print("%-10s" % com_sizes, "# Number of com sizes", file=f)
for num_rank in num_rank_list:
nod_result = coll_result[num_rank]
print("%-10s" % num_rank, "# Com size", file=f)
best = Params( output_dir+"/"+collective+"/best.out" )
best_alg = 0
# Open MPI requires that all data should start from msg size 0.
# The default one is `0 0 0 0\n`
# For collective data starts from msg size 0 (barrier or
# collectives benchmarked by IMB) this line could be updated.
if nod_result.msgsizlst()[0] == 0:
num_sizes = 0
size_output = ""
else:
num_sizes = 1
size_output = "0 0 0 0\n"
for i,msg_siz in enumerate(nod_result.msgsizlst()):
new_alg = nod_result.selectAlg()[i]
if new_alg == best_alg:
continue
best_alg = new_alg
num_sizes += 1
size_output += str(msg_siz)
size_output += " " + str(best_alg)
size_output += " 0"
size_output += " 0\n"
print("%-10s" % num_sizes, "# Number of msg sizes", file=f)
print(size_output, end=' ', file=f)
writeDetail(params, coll_result, raw_dir+"/detail.out", num_alg, exclude_alg, two_proc_alg, num_run, num_rank_list)
def main():
from sys import argv
dir_path = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(dir_path+"/output"):
print("No output detected. Exiting.")
return
config = Params( argv[1] )
writeDecision(config, dir_path, "output/decision.file")
print("Tuning file written to output/decision.file")
if __name__ == "__main__":
main()