-
Notifications
You must be signed in to change notification settings - Fork 276
/
Copy pathcifar10_train.py
428 lines (328 loc) · 19 KB
/
cifar10_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
# Coder: Wenxin Xu
# Github: https://github.com/wenxinxu/resnet_in_tensorflow
# ==============================================================================
from resnet import *
from datetime import datetime
import time
from cifar10_input import *
import pandas as pd
class Train(object):
'''
This Object is responsible for all the training and validation process
'''
def __init__(self):
# Set up all the placeholders
self.placeholders()
def placeholders(self):
'''
There are five placeholders in total.
image_placeholder and label_placeholder are for train images and labels
vali_image_placeholder and vali_label_placeholder are for validation imgaes and labels
lr_placeholder is for learning rate. Feed in learning rate each time of training
implements learning rate decay easily
'''
self.image_placeholder = tf.placeholder(dtype=tf.float32,
shape=[FLAGS.train_batch_size, IMG_HEIGHT,
IMG_WIDTH, IMG_DEPTH])
self.label_placeholder = tf.placeholder(dtype=tf.int32, shape=[FLAGS.train_batch_size])
self.vali_image_placeholder = tf.placeholder(dtype=tf.float32, shape=[FLAGS.validation_batch_size,
IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH])
self.vali_label_placeholder = tf.placeholder(dtype=tf.int32, shape=[FLAGS.validation_batch_size])
self.lr_placeholder = tf.placeholder(dtype=tf.float32, shape=[])
def build_train_validation_graph(self):
'''
This function builds the train graph and validation graph at the same time.
'''
global_step = tf.Variable(0, trainable=False)
validation_step = tf.Variable(0, trainable=False)
# Logits of training data and valiation data come from the same graph. The inference of
# validation data share all the weights with train data. This is implemented by passing
# reuse=True to the variable scopes of train graph
logits = inference(self.image_placeholder, FLAGS.num_residual_blocks, reuse=False)
vali_logits = inference(self.vali_image_placeholder, FLAGS.num_residual_blocks, reuse=True)
# The following codes calculate the train loss, which is consist of the
# softmax cross entropy and the relularization loss
regu_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss = self.loss(logits, self.label_placeholder)
self.full_loss = tf.add_n([loss] + regu_losses)
predictions = tf.nn.softmax(logits)
self.train_top1_error = self.top_k_error(predictions, self.label_placeholder, 1)
# Validation loss
self.vali_loss = self.loss(vali_logits, self.vali_label_placeholder)
vali_predictions = tf.nn.softmax(vali_logits)
self.vali_top1_error = self.top_k_error(vali_predictions, self.vali_label_placeholder, 1)
self.train_op, self.train_ema_op = self.train_operation(global_step, self.full_loss,
self.train_top1_error)
self.val_op = self.validation_op(validation_step, self.vali_top1_error, self.vali_loss)
def train(self):
'''
This is the main function for training
'''
# For the first step, we are loading all training images and validation images into the
# memory
all_data, all_labels = prepare_train_data(padding_size=FLAGS.padding_size)
vali_data, vali_labels = read_validation_data()
# Build the graph for train and validation
self.build_train_validation_graph()
# Initialize a saver to save checkpoints. Merge all summaries, so we can run all
# summarizing operations by running summary_op. Initialize a new session
saver = tf.train.Saver(tf.global_variables())
summary_op = tf.summary.merge_all()
init = tf.initialize_all_variables()
sess = tf.Session()
# If you want to load from a checkpoint
if FLAGS.is_use_ckpt is True:
saver.restore(sess, FLAGS.ckpt_path)
print 'Restored from checkpoint...'
else:
sess.run(init)
# This summary writer object helps write summaries on tensorboard
summary_writer = tf.summary.FileWriter(train_dir, sess.graph)
# These lists are used to save a csv file at last
step_list = []
train_error_list = []
val_error_list = []
print 'Start training...'
print '----------------------------'
for step in xrange(FLAGS.train_steps):
train_batch_data, train_batch_labels = self.generate_augment_train_batch(all_data, all_labels,
FLAGS.train_batch_size)
validation_batch_data, validation_batch_labels = self.generate_vali_batch(vali_data,
vali_labels, FLAGS.validation_batch_size)
# Want to validate once before training. You may check the theoretical validation
# loss first
if step % FLAGS.report_freq == 0:
if FLAGS.is_full_validation is True:
validation_loss_value, validation_error_value = self.full_validation(loss=self.vali_loss,
top1_error=self.vali_top1_error, vali_data=vali_data,
vali_labels=vali_labels, session=sess,
batch_data=train_batch_data, batch_label=train_batch_labels)
vali_summ = tf.Summary()
vali_summ.value.add(tag='full_validation_error',
simple_value=validation_error_value.astype(np.float))
summary_writer.add_summary(vali_summ, step)
summary_writer.flush()
else:
_, validation_error_value, validation_loss_value = sess.run([self.val_op,
self.vali_top1_error,
self.vali_loss],
{self.image_placeholder: train_batch_data,
self.label_placeholder: train_batch_labels,
self.vali_image_placeholder: validation_batch_data,
self.vali_label_placeholder: validation_batch_labels,
self.lr_placeholder: FLAGS.init_lr})
val_error_list.append(validation_error_value)
start_time = time.time()
_, _, train_loss_value, train_error_value = sess.run([self.train_op, self.train_ema_op,
self.full_loss, self.train_top1_error],
{self.image_placeholder: train_batch_data,
self.label_placeholder: train_batch_labels,
self.vali_image_placeholder: validation_batch_data,
self.vali_label_placeholder: validation_batch_labels,
self.lr_placeholder: FLAGS.init_lr})
duration = time.time() - start_time
if step % FLAGS.report_freq == 0:
summary_str = sess.run(summary_op, {self.image_placeholder: train_batch_data,
self.label_placeholder: train_batch_labels,
self.vali_image_placeholder: validation_batch_data,
self.vali_label_placeholder: validation_batch_labels,
self.lr_placeholder: FLAGS.init_lr})
summary_writer.add_summary(summary_str, step)
num_examples_per_step = FLAGS.train_batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)
format_str = ('%s: step %d, loss = %.4f (%.1f examples/sec; %.3f ' 'sec/batch)')
print format_str % (datetime.now(), step, train_loss_value, examples_per_sec,
sec_per_batch)
print 'Train top1 error = ', train_error_value
print 'Validation top1 error = %.4f' % validation_error_value
print 'Validation loss = ', validation_loss_value
print '----------------------------'
step_list.append(step)
train_error_list.append(train_error_value)
if step == FLAGS.decay_step0 or step == FLAGS.decay_step1:
FLAGS.init_lr = 0.1 * FLAGS.init_lr
print 'Learning rate decayed to ', FLAGS.init_lr
# Save checkpoints every 10000 steps
if step % 10000 == 0 or (step + 1) == FLAGS.train_steps:
checkpoint_path = os.path.join(train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)
df = pd.DataFrame(data={'step':step_list, 'train_error':train_error_list,
'validation_error': val_error_list})
df.to_csv(train_dir + FLAGS.version + '_error.csv')
def test(self, test_image_array):
'''
This function is used to evaluate the test data. Please finish pre-precessing in advance
:param test_image_array: 4D numpy array with shape [num_test_images, img_height, img_width,
img_depth]
:return: the softmax probability with shape [num_test_images, num_labels]
'''
num_test_images = len(test_image_array)
num_batches = num_test_images // FLAGS.test_batch_size
remain_images = num_test_images % FLAGS.test_batch_size
print '%i test batches in total...' %num_batches
# Create the test image and labels placeholders
self.test_image_placeholder = tf.placeholder(dtype=tf.float32, shape=[FLAGS.test_batch_size,
IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH])
# Build the test graph
logits = inference(self.test_image_placeholder, FLAGS.num_residual_blocks, reuse=False)
predictions = tf.nn.softmax(logits)
# Initialize a new session and restore a checkpoint
saver = tf.train.Saver(tf.all_variables())
sess = tf.Session()
saver.restore(sess, FLAGS.test_ckpt_path)
print 'Model restored from ', FLAGS.test_ckpt_path
prediction_array = np.array([]).reshape(-1, NUM_CLASS)
# Test by batches
for step in range(num_batches):
if step % 10 == 0:
print '%i batches finished!' %step
offset = step * FLAGS.test_batch_size
test_image_batch = test_image_array[offset:offset+FLAGS.test_batch_size, ...]
batch_prediction_array = sess.run(predictions,
feed_dict={self.test_image_placeholder: test_image_batch})
prediction_array = np.concatenate((prediction_array, batch_prediction_array))
# If test_batch_size is not a divisor of num_test_images
if remain_images != 0:
self.test_image_placeholder = tf.placeholder(dtype=tf.float32, shape=[remain_images,
IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH])
# Build the test graph
logits = inference(self.test_image_placeholder, FLAGS.num_residual_blocks, reuse=True)
predictions = tf.nn.softmax(logits)
test_image_batch = test_image_array[-remain_images:, ...]
batch_prediction_array = sess.run(predictions, feed_dict={
self.test_image_placeholder: test_image_batch})
prediction_array = np.concatenate((prediction_array, batch_prediction_array))
return prediction_array
## Helper functions
def loss(self, logits, labels):
'''
Calculate the cross entropy loss given logits and true labels
:param logits: 2D tensor with shape [batch_size, num_labels]
:param labels: 1D tensor with shape [batch_size]
:return: loss tensor with shape [1]
'''
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
labels=labels, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
return cross_entropy_mean
def top_k_error(self, predictions, labels, k):
'''
Calculate the top-k error
:param predictions: 2D tensor with shape [batch_size, num_labels]
:param labels: 1D tensor with shape [batch_size, 1]
:param k: int
:return: tensor with shape [1]
'''
batch_size = predictions.get_shape().as_list()[0]
in_top1 = tf.to_float(tf.nn.in_top_k(predictions, labels, k=1))
num_correct = tf.reduce_sum(in_top1)
return (batch_size - num_correct) / float(batch_size)
def generate_vali_batch(self, vali_data, vali_label, vali_batch_size):
'''
If you want to use a random batch of validation data to validate instead of using the
whole validation data, this function helps you generate that batch
:param vali_data: 4D numpy array
:param vali_label: 1D numpy array
:param vali_batch_size: int
:return: 4D numpy array and 1D numpy array
'''
offset = np.random.choice(10000 - vali_batch_size, 1)[0]
vali_data_batch = vali_data[offset:offset+vali_batch_size, ...]
vali_label_batch = vali_label[offset:offset+vali_batch_size]
return vali_data_batch, vali_label_batch
def generate_augment_train_batch(self, train_data, train_labels, train_batch_size):
'''
This function helps generate a batch of train data, and random crop, horizontally flip
and whiten them at the same time
:param train_data: 4D numpy array
:param train_labels: 1D numpy array
:param train_batch_size: int
:return: augmented train batch data and labels. 4D numpy array and 1D numpy array
'''
offset = np.random.choice(EPOCH_SIZE - train_batch_size, 1)[0]
batch_data = train_data[offset:offset+train_batch_size, ...]
batch_data = random_crop_and_flip(batch_data, padding_size=FLAGS.padding_size)
batch_data = whitening_image(batch_data)
batch_label = train_labels[offset:offset+FLAGS.train_batch_size]
return batch_data, batch_label
def train_operation(self, global_step, total_loss, top1_error):
'''
Defines train operations
:param global_step: tensor variable with shape [1]
:param total_loss: tensor with shape [1]
:param top1_error: tensor with shape [1]
:return: two operations. Running train_op will do optimization once. Running train_ema_op
will generate the moving average of train error and train loss for tensorboard
'''
# Add train_loss, current learning rate and train error into the tensorboard summary ops
tf.summary.scalar('learning_rate', self.lr_placeholder)
tf.summary.scalar('train_loss', total_loss)
tf.summary.scalar('train_top1_error', top1_error)
# The ema object help calculate the moving average of train loss and train error
ema = tf.train.ExponentialMovingAverage(FLAGS.train_ema_decay, global_step)
train_ema_op = ema.apply([total_loss, top1_error])
tf.summary.scalar('train_top1_error_avg', ema.average(top1_error))
tf.summary.scalar('train_loss_avg', ema.average(total_loss))
opt = tf.train.MomentumOptimizer(learning_rate=self.lr_placeholder, momentum=0.9)
train_op = opt.minimize(total_loss, global_step=global_step)
return train_op, train_ema_op
def validation_op(self, validation_step, top1_error, loss):
'''
Defines validation operations
:param validation_step: tensor with shape [1]
:param top1_error: tensor with shape [1]
:param loss: tensor with shape [1]
:return: validation operation
'''
# This ema object help calculate the moving average of validation loss and error
# ema with decay = 0.0 won't average things at all. This returns the original error
ema = tf.train.ExponentialMovingAverage(0.0, validation_step)
ema2 = tf.train.ExponentialMovingAverage(0.95, validation_step)
val_op = tf.group(validation_step.assign_add(1), ema.apply([top1_error, loss]),
ema2.apply([top1_error, loss]))
top1_error_val = ema.average(top1_error)
top1_error_avg = ema2.average(top1_error)
loss_val = ema.average(loss)
loss_val_avg = ema2.average(loss)
# Summarize these values on tensorboard
tf.summary.scalar('val_top1_error', top1_error_val)
tf.summary.scalar('val_top1_error_avg', top1_error_avg)
tf.summary.scalar('val_loss', loss_val)
tf.summary.scalar('val_loss_avg', loss_val_avg)
return val_op
def full_validation(self, loss, top1_error, session, vali_data, vali_labels, batch_data,
batch_label):
'''
Runs validation on all the 10000 valdiation images
:param loss: tensor with shape [1]
:param top1_error: tensor with shape [1]
:param session: the current tensorflow session
:param vali_data: 4D numpy array
:param vali_labels: 1D numpy array
:param batch_data: 4D numpy array. training batch to feed dict and fetch the weights
:param batch_label: 1D numpy array. training labels to feed the dict
:return: float, float
'''
num_batches = 10000 // FLAGS.validation_batch_size
order = np.random.choice(10000, num_batches * FLAGS.validation_batch_size)
vali_data_subset = vali_data[order, ...]
vali_labels_subset = vali_labels[order]
loss_list = []
error_list = []
for step in range(num_batches):
offset = step * FLAGS.validation_batch_size
feed_dict = {self.image_placeholder: batch_data, self.label_placeholder: batch_label,
self.vali_image_placeholder: vali_data_subset[offset:offset+FLAGS.validation_batch_size, ...],
self.vali_label_placeholder: vali_labels_subset[offset:offset+FLAGS.validation_batch_size],
self.lr_placeholder: FLAGS.init_lr}
loss_value, top1_error_value = session.run([loss, top1_error], feed_dict=feed_dict)
loss_list.append(loss_value)
error_list.append(top1_error_value)
return np.mean(loss_list), np.mean(error_list)
maybe_download_and_extract()
# Initialize the Train object
train = Train()
# Start the training session
train.train()