Skip to content

Latest commit

 

History

History
 
 

templates

TPU Templates

Templates for training TensorFlow models with Cloud TPUs. They are minimal models with fake data that can be successfully trained on TPUs, and can be used as the starting point when you develop models from scratch.

... estimator keras rewrite
cnn trainer.py
trainer.ipynb [Colab]
dense trainer.py
trainer.ipynb [Colab]
trainer_infeed_outfeed.py
trainer.py
trainer_infeed_outfeed.ipynb [Colab]
trainer.ipynb [Colab]
film trainer.py
trainer.ipynb [Colab]
gan trainer_single.py
trainer.py
trainer_single.ipynb [Colab]
trainer.ipynb [Colab]
grl trainer.py
trainer.ipynb [Colab]
lstm trainer.py
trainer.ipynb [Colab]
trainer.py
trainer.ipynb [Colab]

Note: The notebooks and the table above are generated with scripts in tools.

TPUEstimator

Below we show how to run the basic tpu_estimator sample in three different ways to access TPUs: Cloud ML Engine, GCE, and Colab.

To run other samples replace tpu_estimator with their corresponding directory names.

Train on Cloud ML Engine

Run from the templates directory.

BUCKET="gs://YOUR-GCS-BUCKET/"

TRAINER_PACKAGE_PATH="tpu_estimator"
MAIN_TRAINER_MODULE="tpu_estimator.trainer"

now=$(date +"%Y%m%d_%H%M%S")
JOB_NAME="tpu_estimator_$now"

JOB_DIR=$BUCKET"tpu_estimator/"$JOB_NAME

gcloud ml-engine jobs submit training $JOB_NAME \
    --job-dir $JOB_DIR  \
    --package-path $TRAINER_PACKAGE_PATH \
    --module-name $MAIN_TRAINER_MODULE \
    --region us-central1 \
    --config config.yaml \
    --runtime-version 1.9 \
    -- \
    --model-dir=$JOB_DIR\
    --use-tpu

Train on Compute Engine

  1. Create TPU from the console TPU page. Record TPU-NAME of your choice.

  2. Create a GCE VM in the same ZONE from the console GCE VM page

  3. Connect to the GCE VM by clicking on the SSH button.

  4. Run from the GCE VM:

    pip install tensorflow==1.9.0
    
    git clone https://github.com/GoogleCloudPlatform/cloudml-samples.git
    
    cd cloudml-samples/tpu/templates
    
    python -m tpu_estimator.trainer \
    --use-tpu \
    --tpu TPU-NAME \
    --model-dir gs://YOUR-GCS-BUCKET/
    

Train on Colab

  1. Go to Colab for the notebook.

  2. Select TPU as the runtime type.

  3. Update the GCS bucket for model_dir and run all cells. You might be asked to authenticate in order to access the bucket.