Templates for training TensorFlow models with Cloud TPUs. They are minimal models with fake data that can be successfully trained on TPUs, and can be used as the starting point when you develop models from scratch.
Note: The notebooks and the table above are generated with scripts in tools.
Below we show how to run the basic tpu_estimator
sample in three different ways to access TPUs: Cloud ML Engine, GCE, and Colab.
To run other samples replace tpu_estimator
with their corresponding directory names.
Run from the templates
directory.
BUCKET="gs://YOUR-GCS-BUCKET/"
TRAINER_PACKAGE_PATH="tpu_estimator"
MAIN_TRAINER_MODULE="tpu_estimator.trainer"
now=$(date +"%Y%m%d_%H%M%S")
JOB_NAME="tpu_estimator_$now"
JOB_DIR=$BUCKET"tpu_estimator/"$JOB_NAME
gcloud ml-engine jobs submit training $JOB_NAME \
--job-dir $JOB_DIR \
--package-path $TRAINER_PACKAGE_PATH \
--module-name $MAIN_TRAINER_MODULE \
--region us-central1 \
--config config.yaml \
--runtime-version 1.9 \
-- \
--model-dir=$JOB_DIR\
--use-tpu
-
Create TPU from the console TPU page. Record
TPU-NAME
of your choice. -
Create a GCE VM in the same
ZONE
from the console GCE VM page -
Connect to the GCE VM by clicking on the
SSH
button. -
Run from the GCE VM:
pip install tensorflow==1.9.0 git clone https://github.com/GoogleCloudPlatform/cloudml-samples.git cd cloudml-samples/tpu/templates python -m tpu_estimator.trainer \ --use-tpu \ --tpu TPU-NAME \ --model-dir gs://YOUR-GCS-BUCKET/
-
Go to Colab for the notebook.
-
Select TPU as the runtime type.
-
Update the GCS bucket for
model_dir
and run all cells. You might be asked to authenticate in order to access the bucket.