Skip to content

Latest commit

 

History

History
74 lines (72 loc) · 2.32 KB

README.md

File metadata and controls

74 lines (72 loc) · 2.32 KB

MLHub

MLHub represents a hub for different MLaaS backends. It provides the following functionality:

  • MetaData service for pre-trained ML models
  • A reverse proxy to different MLaaS backends:
                   | -> TFaaS
client --> MLHub --| -> PyTorch
             |     | -> Keras+ScikitLearn
             |
             |--------> MetaData service

Each ML backend server may have different set of APIs and MLHub provides an uniform way to query these services. So far we support the following set of APIs:

  • /model/<name> end-point provides the following methods:
    • GET HTTP request will retrieve ML meta-data for provide ML name, e.g.
# fetch meta-data info about ML model
curl http://localhost:port/model/mnist
  • POST HTTP request will create new ML entry in MLHub for provided ML meta-data JSON record and ML tarball
# post ML meta-data
curl -X POST \
     -H "content-type: application/json" \
     -d '{"model": "mnist", "type": "TensorFlow", "meta": {}}' \
     http://localhost:port/model/mnist
  • PUT HTTP request will update exsiting ML entry in MLHub for provided ML meta-data JSON record
# post ML meta-data
curl -X PUT \
     -H "content-type: application/json" \
     -d '{"model": "mnist", "type": "TensorFlow", "meta": {"param": 1}}' \
     http://localhost:port/model/mnist
  • DELETE HTTP request will delete ML entry in MLHub for provided ML name
curl -X DELETE \
     http://localhost:port/model/mnist
  • /models to list existing ML models, GET HTTP request
# to get all ML models
curl http://localhost:port/models

ML model APIs

  • /model/<model_name>/upload uploads ML model bundle
# upload ML model
curl -X POST -H "Content-Encoding: gzip" \
     -H "content-type: application/octet-stream" \
     --data-binary @./mnist.tar.gz \
     http://localhost:port/model/mnist/upload
  • /model/<model_name>/download downloads ML model bundle
curl http://localhost:port/model/mnist/download
  • /model/<model_name>/predict to get prediction from a given ML model.
# provide prediction for given input vector
curl -X GET \
     -H "content-type: application/json" \
     -d '{"input": [input values]}' \
     http://localhost:port/model/mnist/predict

# provide prediction for given image file
curl http://localhost:8083/model/mnist \
     -F 'image=@./img4.png'