-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_titles.py
executable file
·719 lines (592 loc) · 35.4 KB
/
train_titles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import torch
import numpy as np
import random
import os
from metrics import compute_metrics, tensor_text_to_video_metrics, tensor_video_to_text_sim
import time
import datetime
import argparse
from modules.tokenization_clip import SimpleTokenizer as ClipTokenizer
from modules.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from modules.modeling_tv_titles_video import CLIP4Clip
from modules.optimization import BertAdam
from tqdm import tqdm
from sim_matrix.fusion_scores import fusion_scores
from util import parallel_apply, get_logger, AverageMeter
from dataloaders.data_dataloaders import DATALOADER_DICT
import torch.distributed as dist
global logger
def get_args(description='CLIP4Clip on Retrieval Task'):
parser = argparse.ArgumentParser(description=description)
parser.add_argument("--do_pretrain", action='store_true', help="Whether to run training.")
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--do_eval_zero_shot", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--do_test", action='store_true', help="Whether to run test on the dev set.")
parser.add_argument('--train_csv', type=str, default='data/.train.csv', help='')
parser.add_argument('--val_csv', type=str, default='data/.val.csv', help='')
parser.add_argument('--data_path', type=str, default='data/caption.pickle', help='data pickle file path')
parser.add_argument('--features_path', type=str, default='data/videos_feature.pickle', help='feature path')
parser.add_argument('--num_thread_reader', type=int, default=1, help='')
parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate')
parser.add_argument('--epochs', type=int, default=20, help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--batch_size_val', type=int, default=3500, help='batch size eval')
parser.add_argument('--lr_decay', type=float, default=0.9, help='Learning rate exp epoch decay')
parser.add_argument('--n_display', type=int, default=100, help='Information display frequence')
parser.add_argument('--video_dim', type=int, default=1024, help='video feature dimension')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--max_words', type=int, default=20, help='')
parser.add_argument('--max_frames', type=int, default=100, help='')
parser.add_argument('--feature_framerate', type=int, default=1, help='')
parser.add_argument('--margin', type=float, default=0.1, help='margin for loss')
parser.add_argument('--hard_negative_rate', type=float, default=0.5, help='rate of intra negative sample')
parser.add_argument('--negative_weighting', type=int, default=1, help='Weight the loss for intra negative')
parser.add_argument('--n_pair', type=int, default=1, help='Num of pair to output from data loader')
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--cross_model", default="cross-base", type=str, required=False, help="Cross module")
parser.add_argument("--init_model", default=None, type=str, required=False, help="Initial model.")
parser.add_argument("--resume_model", default=None, type=str, required=False, help="Resume train model.")
parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% of training.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--n_gpu', type=int, default=1, help="Changed in the execute process.")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--task_type", default="retrieval", type=str, help="Point the task `retrieval` to finetune.")
parser.add_argument("--datatype", default="msrvtt", type=str, help="Point the dataset to finetune.")
parser.add_argument("--world_size", default=0, type=int, help="distribted training")
parser.add_argument("--local_rank", default=0, type=int, help="distribted training")
parser.add_argument("--rank", default=0, type=int, help="distribted training")
parser.add_argument('--coef_lr', type=float, default=1., help='coefficient for bert branch.')
parser.add_argument('--use_mil', action='store_true', help="Whether use MIL as Miech et. al. (2020).")
parser.add_argument('--sampled_use_mil', action='store_true', help="Whether MIL, has a high priority than use_mil.")
parser.add_argument('--text_num_hidden_layers', type=int, default=12, help="Layer NO. of text.")
parser.add_argument('--visual_num_hidden_layers', type=int, default=12, help="Layer NO. of visual.")
parser.add_argument('--cross_num_hidden_layers', type=int, default=4, help="Layer NO. of cross.")
parser.add_argument('--loose_type', action='store_true', help="Default using tight type for retrieval.")
parser.add_argument('--expand_msrvtt_sentences', action='store_true', help="")
parser.add_argument('--train_frame_order', type=int, default=0, choices=[0, 1, 2],
help="Frame order, 0: ordinary order; 1: reverse order; 2: random order.")
parser.add_argument('--eval_frame_order', type=int, default=0, choices=[0, 1, 2],
help="Frame order, 0: ordinary order; 1: reverse order; 2: random order.")
parser.add_argument('--freeze_layer_num', type=int, default=0, help="Layer NO. of CLIP need to freeze.")
parser.add_argument('--slice_framepos', type=int, default=0, choices=[0, 1, 2],
help="0: cut from head frames; 1: cut from tail frames; 2: extract frames uniformly.")
parser.add_argument('--linear_patch', type=str, default="2d", choices=["2d", "3d"],
help="linear projection of flattened patches.")
parser.add_argument('--sim_header', type=str, default="meanP",
choices=["meanP", "seqLSTM", "seqTransf", "tightTransf", "seqTransf_topk"],
help="choice a similarity header.")
parser.add_argument("--pretrained_clip_name", default="ViT-B/32", type=str, help="Choose a CLIP version")
parser.add_argument("--strategy", default=2, type=int, help="Sampling strategies.")
### interaction
parser.add_argument('--interaction', type=str, default='dp', help="interaction type for retrieval.")
parser.add_argument('--wti_arch', type=int, default=2, help="select a architecture for weight branch")
parser.add_argument('--text_pool_type', type=str, default='clip_top1')
parser.add_argument("--k", default=1, type=int, help="topk caption.")
parser.add_argument("--generate_images", default=None, type=str, help="generate images path")
parser.add_argument("--freeze_text_encoder", action='store_true', help="whether freeze text encoder")
args = parser.parse_args()
if args.sim_header == "tightTransf":
args.loose_type = False
# Check paramenters
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
if not args.do_train and not args.do_eval and not args.do_eval_zero_shot and not args.do_test:
raise ValueError("At least one of `do_train` or `do_eval` or 'do_eval_zero_shot' 'do_test' must be True.")
args.batch_size = int(args.batch_size / args.gradient_accumulation_steps)
return args
def set_seed_logger(args):
global logger
# predefining random initial seeds
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
world_size = torch.distributed.get_world_size()
torch.cuda.set_device(args.local_rank)
args.world_size = world_size
rank = torch.distributed.get_rank()
args.rank = rank
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
logger = get_logger(os.path.join(args.output_dir, "log.txt"))
if args.local_rank == 0:
logger.info("Effective parameters:")
for key in sorted(args.__dict__):
logger.info(" <<< {}: {}".format(key, args.__dict__[key]))
return args
def init_device(args, local_rank):
global logger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu", local_rank)
n_gpu = torch.distributed.get_world_size()
logger.info("device: {} n_gpu: {}".format(device, n_gpu))
args.n_gpu = n_gpu
if args.batch_size % args.n_gpu != 0:
raise ValueError("Invalid batch_size/batch_size_val and n_gpu parameter: {}%{} and {}%{}, should be == 0".format(
args.batch_size, args.n_gpu, args.batch_size_val, args.n_gpu))
return device, n_gpu
def init_model(args, device, n_gpu, local_rank):
if args.init_model:
model_state_dict = torch.load(args.init_model, map_location='cpu')
else:
model_state_dict = None
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
model = CLIP4Clip.from_pretrained(args.cross_model, cache_dir=cache_dir, state_dict=model_state_dict, task_config=args)
model.to(device)
if args.freeze_text_encoder == True:
for name,param in model.named_parameters():
if 'clip.transformer.' in name :
param.requires_grad_(False)
return model
def init_model_pre(args, device, n_gpu, local_rank, model_file):
if args.init_model:
model_state_dict = torch.load(args.init_model, map_location='cpu')
else:
model_state_dict = None
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
model = CLIP4Clip.from_pretrained(args.cross_model, cache_dir=cache_dir, state_dict=model_state_dict, task_config=args)
model_state_dict = torch.load(model_file, map_location='cpu')
keys = model_state_dict.keys()
for name,param in model.named_parameters():
if 'clip.transformer.' in name and name in keys:
param.requires_grad_(False)
param.copy_(model_state_dict[name])
model.to(device)
return model
def prep_optimizer(args, model, num_train_optimization_steps, device, n_gpu, local_rank, coef_lr=1.):
if hasattr(model, 'module'):
model = model.module
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
decay_param_tp = [(n, p) for n, p in param_optimizer if not any(nd in n for nd in no_decay)]
no_decay_param_tp = [(n, p) for n, p in param_optimizer if any(nd in n for nd in no_decay)]
decay_clip_param_tp = [(n, p) for n, p in decay_param_tp if ("clip." in n )]
decay_noclip_param_tp = [(n, p) for n, p in decay_param_tp if ("clip." not in n )]
no_decay_clip_param_tp = [(n, p) for n, p in no_decay_param_tp if ("clip." in n )]
no_decay_noclip_param_tp = [(n, p) for n, p in no_decay_param_tp if ("clip." not in n )]
weight_decay = 0.2
optimizer_grouped_parameters = [
{'params': [p for n, p in decay_clip_param_tp], 'weight_decay': weight_decay, 'lr': args.lr * coef_lr},
{'params': [p for n, p in decay_noclip_param_tp], 'weight_decay': weight_decay},
{'params': [p for n, p in no_decay_clip_param_tp], 'weight_decay': 0.0, 'lr': args.lr * coef_lr},
{'params': [p for n, p in no_decay_noclip_param_tp], 'weight_decay': 0.0}
]
scheduler = None
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.lr, warmup=args.warmup_proportion,
schedule='warmup_cosine', b1=0.9, b2=0.98, e=1e-6,
t_total=num_train_optimization_steps, weight_decay=weight_decay,
max_grad_norm=1.0)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank],
output_device=local_rank, find_unused_parameters=True)
return optimizer, scheduler, model
def save_model(epoch, args, model, optimizer, tr_loss, type_name=""):
# Only save the model it-self
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(
args.output_dir, "titles/pytorch_model.bin.{}{}".format("" if type_name=="" else type_name+".", epoch))
optimizer_state_file = os.path.join(
args.output_dir, "titles/pytorch_opt.bin.{}{}".format("" if type_name=="" else type_name+".", epoch))
torch.save(model_to_save.state_dict(), output_model_file)
torch.save({
'epoch': epoch,
'optimizer_state_dict': optimizer.state_dict(),
'loss': tr_loss,
}, optimizer_state_file)
logger.info("Model saved to %s", output_model_file)
logger.info("Optimizer saved to %s", optimizer_state_file)
return output_model_file
def load_model(epoch, args, n_gpu, device, model_file=None): # for evaluation and test
if model_file is None or len(model_file) == 0:
model_file = os.path.join(args.output_dir, "titles/pytorch_model.bin.{}".format(epoch))
if os.path.exists(model_file):
model_state_dict = torch.load(model_file, map_location='cpu')
if args.local_rank == 0:
logger.info("Model loaded from %s", model_file)
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
model = CLIP4Clip.from_pretrained(args.cross_model, cache_dir=cache_dir, state_dict=model_state_dict, task_config=args)
model.to(device)
else:
model = None
return model
def test_load_model(args, n_gpu, device, model_file=None):
if os.path.exists(model_file):
model_state_dict = torch.load(model_file, map_location='cpu')
if args.local_rank == 0:
logger.info("Model loaded from %s", model_file)
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
model = CLIP4Clip.from_pretrained(args.cross_model, cache_dir=cache_dir, state_dict=model_state_dict, task_config=args)
model.to(device)
else:
model = None
return model
def load_model_eval_zero_shot(epoch, args, n_gpu, device, model_file=None):
if True:
model_state_dict = None
if args.local_rank == 0:
logger.info("Model loaded from %s", model_file)
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
model = CLIP4Clip.from_pretrained(args.cross_model, cache_dir=cache_dir, state_dict=model_state_dict, task_config=args)
model.to(device)
else:
model = None
return model
def train_epoch(epoch, args, model, train_dataloader, device, n_gpu, optimizer, scheduler, global_step, local_rank=0):
global logger
torch.cuda.empty_cache()
model.train()
log_step = args.n_display
batch_time = AverageMeter()
end = time.time()
total_loss = 0
logger.info('start dataloader !')
for step, batch in enumerate(train_dataloader):
if n_gpu == 1:
# multi-gpu does scattering it-self, not consider
batch = tuple(t.to(device=device, non_blocking=True) for t in batch)
input_ids, input_mask, segment_ids, video, video_mask, title_ids, title_mask = batch
loss = model(input_ids, input_mask, video, video_mask, title_ids, title_mask, train_video = False)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
total_loss += float(loss)
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
if scheduler is not None:
scheduler.step() # Update learning rate schedule
optimizer.step()
optimizer.zero_grad()
# https://github.com/openai/CLIP/issues/46
if hasattr(model, 'module'):
torch.clamp_(model.module.clip.logit_scale.data, max=np.log(100))
else:
torch.clamp_(model.clip.logit_scale.data, max=np.log(100))
batch_time.update(time.time() - end)
end = time.time()
cur_iter = epoch * len(train_dataloader) + step
max_iter = args.epochs * len(train_dataloader)
eta_sec = batch_time.avg * (max_iter - cur_iter + 1)
eta_sec = str(datetime.timedelta(seconds=int(eta_sec)))
global_step += 1
if global_step % log_step == 0 and local_rank == 0:
logger.info(('Epoch: [{0}/{1}], step: [{2}/{3}], lr: {lr:.2e} eta: {4}\t'
'Loss: {loss:.4f}, Time/step: {batch_time.avg:.3f}').format(
epoch+1, args.epochs, step+1, len(train_dataloader),
eta_sec, loss=loss, batch_time=batch_time,
lr=optimizer.get_lr()[0]
))
total_loss = total_loss / len(train_dataloader)
return total_loss, global_step
def _run_on_single_gpu(model, batch_list_t, batch_list_v, batch_list_title, batch_sequence_output_list, batch_visual_output_list, batch_title_output_list):
sim_matrix = []
for idx1, b1 in enumerate(batch_list_t):
input_mask, *_tmp = b1
sequence_output = batch_sequence_output_list[idx1]
each_row = []
for idx2, b2 in enumerate(batch_list_v):
video_mask, *_tmp = b2
title_mask, *_tmp = batch_list_title[idx2]
visual_output = batch_visual_output_list[idx2]
title_output = batch_title_output_list[idx2]
b1b2_logits = model.get_titles_similarity_logits(sequence_output, visual_output, title_output,
input_mask, video_mask, title_mask, loose_type=model.loose_type)
b1b2_logits = b1b2_logits.cpu().detach().numpy()
each_row.append(b1b2_logits)
each_row = np.concatenate(tuple(each_row), axis=-1)
sim_matrix.append(each_row)
return sim_matrix
def eval_epoch(args, model, test_dataloader, device, n_gpu):
if hasattr(model, 'module'):
model = model.module.to(device)
else:
model = model.to(device)
multi_sentence_ = False
cut_off_points_, sentence_num_, video_num_ = [], -1, -1
if hasattr(test_dataloader.dataset, 'multi_sentence_per_video') \
and test_dataloader.dataset.multi_sentence_per_video:
multi_sentence_ = True
cut_off_points_ = test_dataloader.dataset.cut_off_points
sentence_num_ = test_dataloader.dataset.sentence_num
video_num_ = test_dataloader.dataset.video_num
cut_off_points_ = [itm - 1 for itm in cut_off_points_]
if multi_sentence_:
logger.warning("Eval under the multi-sentence per video clip setting.")
logger.warning("sentence num: {}, video num: {}".format(sentence_num_, video_num_))
model.eval()
with torch.no_grad():
batch_list_t = []
batch_list_v = []
batch_list_title = []
batch_sequence_output_list, batch_visual_output_list, batch_title_output_list = [], [], []
total_video_num = 0
# ----------------------------
# 1. cache the features
# ----------------------------
for bid, batch in enumerate(test_dataloader):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, video, video_mask, title_ids, title_mask = batch
if multi_sentence_:
b, *_t = video.shape
sequence_output = model.get_text_output(input_ids)
batch_sequence_output_list.append(sequence_output)
batch_list_t.append((input_mask,))
s_, e_ = total_video_num, total_video_num + b
filter_inds = [itm - s_ for itm in cut_off_points_ if itm >= s_ and itm < e_]
if len(filter_inds) > 0:
video, video_mask = video[filter_inds, ...], video_mask[filter_inds, ...]
title_ids, title_mask = title_ids[filter_inds, ...], title_mask[filter_inds, ...]
visual_output = None
title_output = model.get_text_output(title_ids)
batch_visual_output_list.append(visual_output)
batch_list_v.append((video_mask,))
batch_title_output_list.append(title_output)
batch_list_title.append((title_mask,))
total_video_num += b
else:
sequence_output, visual_output, title_output = model.get_text_video_title_output(input_ids, video, title_ids, title_mask=title_mask, text_mask=input_mask, train_video = False)
batch_title_output_list.append(title_output)
batch_list_title.append((title_mask,))
batch_sequence_output_list.append(sequence_output)
batch_list_t.append((input_mask,))
batch_visual_output_list.append(visual_output)
batch_list_v.append((video_mask,))
print("{}/{}\r".format(bid, len(test_dataloader)), end="")
# ----------------------------------
# 2. calculate the similarity
# ----------------------------------
if n_gpu > 1:
device_ids = list(range(n_gpu))
batch_list_t_splits = []
batch_list_v_splits = []
batch_list_title_splits = []
batch_t_output_splits = []
batch_v_output_splits = []
batch_title_output_splits = []
bacth_len = len(batch_list_t)
split_len = (bacth_len + n_gpu - 1) // n_gpu
for dev_id in device_ids:
s_, e_ = dev_id * split_len, (dev_id + 1) * split_len
if dev_id == 0:
batch_list_t_splits.append(batch_list_t[s_:e_])
batch_list_v_splits.append(batch_list_v)
batch_list_title_splits.append(batch_list_title)
batch_t_output_splits.append(batch_sequence_output_list[s_:e_])
batch_v_output_splits.append(batch_visual_output_list)
batch_title_output_splits.append(batch_title_output_list)
else:
devc = torch.device('cuda:{}'.format(str(dev_id)))
devc_batch_list = [tuple(t.to(devc) for t in b) for b in batch_list_t[s_:e_]]
batch_list_t_splits.append(devc_batch_list)
devc_batch_list = [tuple(t.to(devc) for t in b) for b in batch_list_v]
batch_list_v_splits.append(devc_batch_list)
devc_batch_list = [tuple(t.to(devc) for t in b) for b in batch_list_title]
batch_list_title_splits.append(devc_batch_list)
devc_batch_list = [b.to(devc) for b in batch_sequence_output_list[s_:e_]]
batch_t_output_splits.append(devc_batch_list)
devc_batch_list = [b.to(devc) for b in batch_visual_output_list]
batch_v_output_splits.append(devc_batch_list)
devc_batch_list = [b.to(devc) for b in batch_title_output_list]
batch_title_output_splits.append(devc_batch_list)
parameters_tuple_list = [(batch_list_t_splits[dev_id], batch_list_v_splits[dev_id], batch_list_title_splits[dev_id],
batch_t_output_splits[dev_id], batch_v_output_splits[dev_id], batch_title_output_splits[dev_id]) for dev_id in device_ids]
parallel_outputs = parallel_apply(_run_on_single_gpu, model, parameters_tuple_list, device_ids)
sim_matrix = []
for idx in range(len(parallel_outputs)):
sim_matrix += parallel_outputs[idx]
sim_matrix = np.concatenate(tuple(sim_matrix), axis=0)
else:
print('########## Using one GPU for evaluation ##########')
sim_matrix = _run_on_single_gpu(model, batch_list_t, batch_list_v, batch_list_title, batch_sequence_output_list, batch_visual_output_list, batch_title_output_list)
sim_matrix = np.concatenate(tuple(sim_matrix), axis=0)
np.save('sim_matrix/msrvtt_titles_matrix', sim_matrix)
if multi_sentence_:
logger.info("before reshape, sim matrix size: {} x {}".format(sim_matrix.shape[0], sim_matrix.shape[1]))
cut_off_points2len_ = [itm + 1 for itm in cut_off_points_]
max_length = max([e_-s_ for s_, e_ in zip([0]+cut_off_points2len_[:-1], cut_off_points2len_)])
sim_matrix_new = []
for s_, e_ in zip([0] + cut_off_points2len_[:-1], cut_off_points2len_):
sim_matrix_new.append(np.concatenate((sim_matrix[s_:e_],
np.full((max_length-e_+s_, sim_matrix.shape[1]), -np.inf)), axis=0))
sim_matrix = np.stack(tuple(sim_matrix_new), axis=0)
np.save('sim_matrix/didemo_titles_matrix', sim_matrix)
logger.info("after reshape, sim matrix size: {} x {} x {}".
format(sim_matrix.shape[0], sim_matrix.shape[1], sim_matrix.shape[2]))
tv_metrics = tensor_text_to_video_metrics(sim_matrix)
vt_metrics = compute_metrics(tensor_video_to_text_sim(sim_matrix))
else:
logger.info("sim matrix size: {}, {}".format(sim_matrix.shape[0], sim_matrix.shape[1]))
tv_metrics = compute_metrics(sim_matrix)
vt_metrics = compute_metrics(sim_matrix.T)
logger.info('\t Length-T: {}, Length-V:{}'.format(len(sim_matrix), len(sim_matrix[0])))
logger.info("Text-to-Video:")
logger.info('\t>>> R@1: {:.1f} - R@5: {:.1f} - R@10: {:.1f} - Median R: {:.1f} - Mean R: {:.1f}'.
format(tv_metrics['R1'], tv_metrics['R5'], tv_metrics['R10'], tv_metrics['MR'], tv_metrics['MeanR']))
logger.info("Video-to-Text:")
logger.info('\t>>> V2T$R@1: {:.1f} - V2T$R@5: {:.1f} - V2T$R@10: {:.1f} - V2T$Median R: {:.1f} - V2T$Mean R: {:.1f}'.
format(vt_metrics['R1'], vt_metrics['R5'], vt_metrics['R10'], vt_metrics['MR'], vt_metrics['MeanR']))
R1 = tv_metrics['R1']
return R1
def train_titles(args, best_video_weight_path= None):
global logger
if args.world_size == 0:
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '56220'
os.environ["RANK"] = "0"
os.environ['WORLD_SIZE'] = '1'
if torch.distributed.is_initialized() != True:
torch.distributed.init_process_group(backend="nccl")
args = set_seed_logger(args)
device, n_gpu = init_device(args, args.local_rank)
tokenizer = ClipTokenizer()
assert args.task_type == "retrieval"
model = init_model_pre(args, device, n_gpu, args.local_rank, best_video_weight_path)
assert args.freeze_layer_num <= 12 and args.freeze_layer_num >= -1
if hasattr(model, "clip") and args.freeze_layer_num > -1:
for name, param in model.clip.named_parameters():
# top layers always need to train
if name.find("ln_final.") == 0 or name.find("text_projection") == 0 or name.find("logit_scale") == 0 \
or name.find("visual.ln_post.") == 0 or name.find("visual.proj") == 0:
continue # need to train
elif name.find("visual.transformer.resblocks.") == 0 or name.find("transformer.resblocks.") == 0:
layer_num = int(name.split(".resblocks.")[1].split(".")[0])
if layer_num >= args.freeze_layer_num:
continue # need to train
if args.linear_patch == "3d" and name.find("conv2."):
continue
else:
# paramenters which < freeze_layer_num will be freezed
param.requires_grad = False
assert args.datatype in DATALOADER_DICT
assert DATALOADER_DICT[args.datatype]["test"] is not None \
or DATALOADER_DICT[args.datatype]["val"] is not None
test_dataloader, test_length = None, 0
if DATALOADER_DICT[args.datatype]["test"] is not None: # false pass
test_dataloader, test_length = DATALOADER_DICT[args.datatype]["test"](args, tokenizer, load_video = False)
if DATALOADER_DICT[args.datatype]["val"] is not None:
val_dataloader, val_length = DATALOADER_DICT[args.datatype]["val"](args, tokenizer, load_video = False, subset="val") # through this
else:
val_dataloader, val_length = test_dataloader, test_length
if test_dataloader is None: # false pass
test_dataloader, test_length = val_dataloader, val_length
if args.local_rank == 0:
logger.info("***** Running test *****")
logger.info(" Num examples = %d", test_length)
logger.info(" Batch size = %d", args.batch_size_val)
logger.info(" Num steps = %d", len(test_dataloader))
logger.info("***** Running val *****")
logger.info(" Num examples = %d", val_length)
if args.train_frame_order == 0:
logger.info("***** Video sequential order *****")
elif args.train_frame_order == 1:
logger.info("***** Video reverse order *****")
elif args.train_frame_order == 2:
logger.info("***** Video shuffle order *****")
if args.do_train:
train_dataloader, train_length, train_sampler = DATALOADER_DICT[args.datatype]["train"](args, tokenizer, load_video = False, caption_aug = False)
num_train_optimization_steps = (int(len(train_dataloader) + args.gradient_accumulation_steps - 1)
/ args.gradient_accumulation_steps) * args.epochs
coef_lr = args.coef_lr
# distribute model by torch.nn.distributing
optimizer, scheduler, model = prep_optimizer(args, model, num_train_optimization_steps, device, n_gpu, args.local_rank, coef_lr=coef_lr)
if args.local_rank == 0:
logger.info("***** Running training *****")
logger.info(" Num examples = %d", train_length)
logger.info(" Batch size = %d", args.batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps * args.gradient_accumulation_steps)
best_score = 0.00001
best_output_model_file = "None"
## ##############################################################
# resume optimizer state besides loss to continue train
## ##############################################################
resumed_epoch = 0
if args.resume_model:
checkpoint = torch.load(args.resume_model, map_location='cpu')
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
resumed_epoch = checkpoint['epoch']+1
resumed_loss = checkpoint['loss']
global_step = 0
logger.info("start training !")
logger.info("resumed_epoch = %d", resumed_epoch)
state = True # everything is correct
for epoch in range(resumed_epoch, args.epochs):
train_sampler.set_epoch(epoch)
tr_loss, global_step = train_epoch(epoch, args, model, train_dataloader, device, n_gpu, optimizer,
scheduler, global_step, local_rank=args.local_rank)
logger.info('args.local_rank = %d', args.local_rank)
try:
if args.local_rank == 0:
logger.info("Epoch %d/%s Finished, Train Loss: %f", epoch + 1, args.epochs, tr_loss)
output_model_file = save_model(epoch, args, model, optimizer, tr_loss, type_name="")
# Run on val dataset, this process is *TIME-consuming*.
logger.info("Eval on val dataset")
R1 = eval_epoch(args, model, test_dataloader, device, n_gpu=1)
if best_score <= R1:
best_score = R1
best_output_model_file = output_model_file
logger.info("The best model is: {}, the R1 is: {:.4f}".format(best_output_model_file, best_score))
state = True
except:
logger.info('CUDA out of memory when evaluating. Testing model at the end!')
state = False
continue
## Uncomment if want to test on the best checkpoint
if args.local_rank == 0 and state:
model = load_model(-1, args, n_gpu=1, device=device, model_file=best_output_model_file)
eval_epoch(args, model, test_dataloader, device, n_gpu=1)
elif args.do_eval:
if args.local_rank == 0:
best_score = 0.00001
for epoch in range(args.epochs):
model = load_model(epoch, args, n_gpu=1, device=device) # comment for zero-shot
R1 = eval_epoch(args, model, test_dataloader, device, n_gpu=1)
if best_score <= R1:
best_score = R1
logger.info("The epoch of best model is: {}, the R1 is: {:.4f}".format(epoch, best_score))
elif args.do_eval_zero_shot:
if args.local_rank == 0:
best_score = 0.00001
epoch = 0
model = load_model_eval_zero_shot(epoch, args, n_gpu=1, device=device) # comment for zero-shot
R1 = eval_epoch(args, model, test_dataloader, device, n_gpu=1)
if best_score <= R1:
best_score = R1
logger.info("The epoch of best model is: {}, the R1 is: {:.4f}".format(epoch, best_score))
elif args.do_test:
if args.local_rank == 0:
model_file = 'xxxxxx'
best_score = 0.00001
epoch = -1
model = test_load_model(args, n_gpu=1, device=device, model_file=model_file) # comment for zero-shot
R1 = eval_epoch(args, model, test_dataloader, device, n_gpu=1)
if best_score <= R1:
best_score = R1
logger.info(" the best model R1 is: {:.4f}".format(best_score))
if __name__ == "__main__":
args = get_args()
best_video_weight_path = os.path.join(args.output_dir, 'video/pytorch_best_model')
train_titles(args, best_video_weight_path)
if dist.get_rank() == 0:
fusion_scores()